Determining the Critical Point of Concrete’s Dynamic Damage Using Interval Search Method under Stress Space

WU Bin,HU Wei-hua,WEN Pei-jun

Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (3) : 130-133.

PDF(1716 KB)
PDF(1716 KB)
Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (3) : 130-133. DOI: 10.11988/ckyyb.20150719
HYDRAULIC STRUCTURE AND MATERIAL

Determining the Critical Point of Concrete’s Dynamic Damage Using Interval Search Method under Stress Space

  • WU Bin1,2,HU Wei-hua2,3,WEN Pei-jun4
Author information +
History +

Abstract

Uniaxial compression test was carried out on standard cube specimens under different strain rates (10-5, 10-4, 10-3, 10-2/s), and damage variable was defined with concrete elastic modulus as the parameter. Damage evolution rules and variation of critical point of damage with strain rate were analyzed under stress space. Results show that with the increase of strain rate, 1) the stress level at critical point of damage rises, and the first and second critical points move to the positions of higher stress level; 2) the interval length of first phase of damage increases and the interval length of third phase reduces, but the change of strain rate has little effect on the interval length of the second phase, which remains about 0.3.

Key words

concrete / dynamic damage / critical point / interval search / stress space

Cite this article

Download Citations
WU Bin,HU Wei-hua,WEN Pei-jun. Determining the Critical Point of Concrete’s Dynamic Damage Using Interval Search Method under Stress Space[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(3): 130-133 https://doi.org/10.11988/ckyyb.20150719

References

[1] COWELL W L. Dynamic Properties of Plain Portland Cement Concrete Technical Report No.R477[R]. California: US Naval Civil Engineering Laboratory, 1996.
[2] SPARK P R, MENZIES J B. The Effect of Rate of Loading up the Static and Fatigue Strengths of Plain Concrete in Compression[J]. Magazine of Concrete Research, 1973, 25(83):73-80.
[3] 董毓利,谢和平,赵 鹏.不同应变速率下混凝土受压全过程的实验研究及其本构模型[J].水利学报,1997,(7):72-77.
[4] 肖诗云,张 剑.不同应变速率下混凝土受压损伤试验研究[J].土木工程学报,2010,43(3):40-45.
[5]JANSON J, HULT J. Fracture Mechanics and Damage Mechanics: A Combined Approach[J]. Journal of Applied Mechanics, 1977, (1): 59-64.
[6] 钱济成,周建方.混凝土的两种损伤模型及其应用[J]. 河海大学学报, 1989,(3): 40 - 47.
[7]BURLION N, GATUINGT F. Compaction and Tensile Damage in Concrete: Constitutive Modeling and Application to Dynamics[J]. Computation Methods and Applied Mechanics Engineering, 2000, 183(3/4): 291-308.
[8] 李庆斌,张楚汉,王光纶. 单轴状态下混凝土的动力损伤本构模型[J]. 水利学报,1994, (12): 55-60.
[9] JGJ 55—2011,普通混凝土配合比设计规程[S].北京:中国建筑工业出版社,2011.
[10]纪洪广,贾立宏,李造鼎.混凝土损伤的声发射模式研究[J].声学学报,1997,(6):601-608.
[11]纪洪广, 张天森, 蔡美峰,等. 混凝土材料损伤的声发射动态检测试验研究[J]. 岩石力学与工程学报,2000, 19(2):165-168.
[12]MATSUYAMA K, ISHIBASHI A, OHTSO M. Rate Process Analysis of AE Activity in Core Test of Deteriorated Concrete[C]∥Progress in Acoustic Emission VI: Proceedings of the 11th International Acoustic Emission Symposium. Japan: The Japanese Society for NDI, October 26-29, 1992:186-190.
[13]张 明,李仲奎,杨 强,等.准脆性材料声发射的损伤模型及统计分析[J].岩石力学与工程学报,2006,25(12):2493-2501.
PDF(1716 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map