Application of a Spatial Error Model in Concrete Arch Dam Deformation Forecast

HU Tian-yi, XU Pu

Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (11) : 48-53.

PDF(1423 KB)
PDF(1423 KB)
Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (11) : 48-53. DOI: 10.11988/ckyyb.20160657
ENGINEERING SAFETY AND DISASTER PREVENTION

Application of a Spatial Error Model in Concrete Arch Dam Deformation Forecast

  • HU Tian-yi1,2,3, XU Pu3
Author information +
History +

Abstract

Concrete arch dam, as a highly statically indeterminate structure, has strong adaptability and integrity. Traditional statistical models for concrete arch dam mainly focus on the deformation of a single point rather than the interaction among different points. In this article, the spatial autocorrelation of errors of different points at the same instance was mined by using spatial econometric method. Furthermore, the errors were modified by using the spatial regression model, and hence a spatial error model for concrete arch dam was established. As an example, the deformation sequences of 34 monitoring points in Xiaowan arch dam were studied and the results show that the error panel data are of strong positive correlation, and the spatial error model is superior to traditional statistical models.

Key words

concrete arch dam / spatial panel data / spatial error model / spatial autocorrelation / deformation forecast

Cite this article

Download Citations
HU Tian-yi, XU Pu. Application of a Spatial Error Model in Concrete Arch Dam Deformation Forecast[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(11): 48-53 https://doi.org/10.11988/ckyyb.20160657

References

[1] 吴中如, 沈长松, 阮焕祥. 水工建筑物安全监控理论及其应用[M]. 南京: 河海大学出版社, 1990.
[2] 秦 栋. 特高拱坝变形性态时空分析模型研究[D]. 南京:河海大学, 2015.
[3] YU H, WU Z R, BAO T F,et al. Multi-variate Analysis in Dam Monitoring Data with PCA[J]. Science China (Technological Sciences), 2010, 53(4): 36-40.
[4] CEVIK A. Discussion on Correction of Soil Parameters in Calculation of Embankment Settlement Using a BP Network Back-analysis Model[J]. Engineering Geology, 2008, 100(3/4): 146-147.
[5] DENG N Y, TIAN Y J. The New Approach in Data Mining-support Vector Machines[M]. Beijing: Science Press, 2004.
[6] VJUSHIN D, GOVINDAM R B, MONETTI R A, et al. Scaling Analysis of Trends Using DFA[J]. Physica A: Statistical Mechanics and Its Applications, 2001, 302(1/2/3/4): 234-243.
[7] 吴中如, 顾冲时. 重大水工结构隐患病害检测与健康诊断[M]. 北京: 高等教育出版社, 2005.
[8] 顾冲时, 吴中如. 拱坝动态空间变形场的混合模型研究[J]. 工程力学, 1996(增): 376-380.
[9] 谢国权, 戚 蓝, 曾新华. 基于小波和神经网络拱坝变形预测的组合模型研究[J]. 武汉大学学报(工学版), 2006, 39(2): 16-19.
[10]殷详详, 包腾飞, 李月娇,等. HDNN-MC模型在特高拱坝变形预测中的应用[J]. 中国科技论文, 2014, 9(11): 1258-1261.
[11]刘大有, 陈慧灵, 齐 红, 等.时空数据挖掘研究进展[J]. 计算机研究与发展, 2013, 50(2): 225-239.
[12]ANTUNES C M, OLIVEIRA A L. Temporal Data Mining: An Overview[C]∥Proceedings of the International Workshop on Temporal Data Mining(KDD2001). New York: ACM, August 26-29,2001: 1-13.
[13]RODDICK J F, SPILIOPOULOU M. A Survey of Temporal Knowledge Discovery Paradigms and Methods[J]. IEEE Transactions on Knowledge and Data Engineering, 2002, 14(4): 750-767.
[14]FU T C. A Review on Time Series Data Mining[J]. Engineering Applications of Artificial Intelligence, 2011, 24(1): 164-181.
[15]SHEKHAR S, ZHANG P, HUANG Y, et al. Data Mining: Next Generation Challenges and Future Directions[M]. Cambridge, MA: MIT Press, 2004: 357-380.
[16]SHEKHAR S, ZHANG P, HUANG Y. Data Mining and Knowledge Discovery Handbook[M]. Berlin: Springer, 2010,837-854.
[17]顾冲时, 吴中如, 蔡 新. 探讨空间变形场的正反分析模型[J]. 工程力学, 1997, 14(2): 138-143.
[18]李 波, 李 军, 江 凯,等. 碾压混凝土坝变形时空监控模型研究[J]. raybet体育在线 院报, 2013, 30(1): 90-92.
[19]李广春, 戴吾蛟, 杨国祥,等. 时空自回归模型在大坝变形分析中的应用[J]. 武汉大学学报(信息科学版), 2015, 40(7): 877-881.
[20]WARD M D, GLEDITSCH K S. Spatial Regression Models[M]. Oaks: SAGE Publications, 2008.
[21]马洪琪. 我国坝工技术的发展与创新[J]. 水力发电学报, 2014, 33(6): 1-10.
PDF(1423 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map