Parameters Identification of Hydro-turbine Governing System Based on Chaos Particle Swarm Optimization and Modeling Experiment

FENG Yan-min, WANG Zhan, ZHANG Xue-yuan,ZHANG En-bo, LIU Chun-lin

Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (8) : 138-143.

PDF(1660 KB)
PDF(1660 KB)
Journal of Changjiang River Scientific Research Institute ›› 2016, Vol. 33 ›› Issue (8) : 138-143. DOI: 10.11988/ckyyb.20150482
INSTRUMENTATION DEVELOPMENT AND TESTING TECHNIQUES

Parameters Identification of Hydro-turbine Governing System Based on Chaos Particle Swarm Optimization and Modeling Experiment

  • FENG Yan-min1, WANG Zhan1, ZHANG Xue-yuan2,ZHANG En-bo1, LIU Chun-lin1
Author information +
History +

Abstract

To overcome the shortcomings of standard Particle Swarm Optimization(PSO), for example, prone to local optimum and slow later convergence and so on, shrinkage factor and chaos idea were adopted to improve standard PSO in the study. A novel design method for satisfactory function of hydro-turbine governing system was put forward. Chaos PSO was applied to parameters identification of controlled object for governing system. Quality parameters, such as rise time, settling time, hydro-turbine’s reverse peak power and reverse peak time, were directly measured, and the overall satisfaction level of system was taken as fitness function. On the basis of the new method, the control parameters of a hydro-turbine governor were measured in association with parameter identification of hydroelectric turbine-conduit system. Test results show that the simulated data correctly reflect the response characteristics of cascade frequency disturbance for the unit load, and meet the requirements of power grid stability calculation. Furthermore, under large interference, the algorithm still has accurate parameter identification and high convergence efficiency.

Key words

hydro turbine governor / modeling / parameter testing / satisfactory function / parameter identification / chaos particle swarm optimization

Cite this article

Download Citations
FENG Yan-min, WANG Zhan, ZHANG Xue-yuan,ZHANG En-bo, LIU Chun-lin. Parameters Identification of Hydro-turbine Governing System Based on Chaos Particle Swarm Optimization and Modeling Experiment[J]. Journal of Changjiang River Scientific Research Institute. 2016, 33(8): 138-143 https://doi.org/10.11988/ckyyb.20150482

References

[1] 潘熙和, 贾宝良, 吴应文.我国水轮机调速技术最新进展与展望.raybet体育在线 院报,2007,24(5):79-83.
潘熙和,王丽娟.我国水轮机调速技术创新回顾与学科前景展望.raybet体育在线 院报,2011,28(10):221-226.
刘昌玉,何雪松,何凤军,等.水电机组原动机及其调节系统精细化建模.电网技术,2015,39(1):230-235.
刘昌玉,李崇威,洪旭钢,等.基于改进粒子群算法的水轮机调速系统建模.水电能源科学,2011,29(12):124-127.
刘昌玉,梁学磊.水轮机调节系统被控对象模型辨识.水电能源科学,2007,25(2):77-79.
刘昌玉,何雪松,李崇威,等.用于水轮机-引水管道参数辨识的改进型人工鱼群算法.电力自动化设备,2013,33(11):54-63.
纪 震,廖惠连,吴青华.粒子群算法及应用.北京:科学出版社,2008:48-64.
李 华,史可琴,范 越,等.电力系统稳定计算用水轮机调速器模型结构分析.电网技术,2007,31(5):25-28.
程玉婷,涂丽琴,王爱生,等.高油压调速器机械液压系统的优化设计.raybet体育在线 院报,2013,30(12):122-125.
寇攀高.水轮发电机及调速系统的参数辨识方法及控制策略研究.武汉:华中科技大学,2012.
寇攀高,周建中,张孝远,等.基于滑模变结构控制的水轮机调节系统.电网技术,2012,36(8):157-162.
冯雁敏,张雪源.水轮机调速器特性研究综述.水电能源科学,2009,27(3):150-153.
刘志申,李长辉,楚荣珍.双PID 调节在大黑汀电站五号机组调速器中的应用.raybet体育在线 院报,2006,23(5):56-60.
赵林明,夏万禄,刘建红.水力机械特征方程及应用.北京:中国水利水电出版社,2014.
高 鹰,谢胜利.混沌粒子群优化算法.计算机科学,2004,31(8):13-15.
冯雁敏,张雪源,梁年生.松江河梯级水电站短期优化调度数学模型分析.raybet体育在线 院报,2012,29(4):1-6.
刘志坚,束洪春,于继来,等.一种满意控制的水轮机调速系统参数优化方法.中国电机工程学报,2009,29(20):99-105.
马建伟.多指标满意PID控制设计研究.南京:南京理工大学,2005.
DL/T 1235—2013, 同步发电机原动机及其调节系统参数实测与建模导则.北京:中国电力出版社,2013.
王官宏,濮 钧,陶向宇,等.电力系统稳定计算用国产700 MW水轮机调节系统建模及参数测试.电网技术,2010,34(3):101-105.
PDF(1660 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map