As porous medium, concretes of the shaft lining of coal mine are affected by underground water seepage flow. The three-parameter strength criterion and elastic-plastic theory are used to obtain the stress distribution of shaft lining in the elastic zone and plastic zone, and the analytical expression between the groundwater pressure P0 on shaft lining and the plastic zone radius rp. The results show that the ultimate bearing capacity of the shaft lining is the largest when seepage flow is not considered, and the hoop stress σθ of the shaft lining is about 2.7 times of the uniaxial compressive strength of concrete cubes. However, when seepage flow is considered, the ultimate hydraulic pressure that the shaft lining can bear gradually decreases with the increases of porosity β, and when β equals 0.2, the hoop stress of the shaft lining is about 2.4 times of the uniaxial compressive strength of concrete cubes. Therefore, seepage flow has significant influence on the stress distribution of the shaft lining. Moreover, with the increase of hydraulic pressure, the radial stress σr and the hoop stress σθ of concrete in the elastic zone gradually increase, however, when the hydraulic pressure reaches or exceeds the limit pressure(corresponding to the plastic radius), the radial stress σr and the hoop stress σθ in this position remains unchanged. The results provide theoretical reference for the structure design of shaft lining.
Key words
shaft lining of coal mine /
three-parameter strength criterion /
elastic-plastic theory /
fluid-solid coupling mechanism /
groundwater seepage flow
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 姚直书,程 桦,荣传新. 深冻结井筒内层钢板高强钢筋混凝土复合井壁实验研究[J]. 岩石力学与工程学报, 2008, 27 (1):153-158.
[2] 程 桦, 孙文若, 姚直书. 高强混凝土井壁模型实验研究[J]. 建井技术,1995,16(6): 26-27.
[3] 姚直书,程 桦,孙文若. 深厚表土层中高强复合井壁结构的试验研究[J]. 岩土力学, 2003, 24 (5):739-743.
[4] 姚直书,程 桦,杨俊杰. 深表土中高强钢筋混凝土井壁力学性能的试验研究[J]. 煤炭学报,2004,29(2):167-171.
[5] 杨俊杰.混凝土结构井壁的破坏特征和强度特征[J]. 煤炭学报,1998, 23(3):246-251.
[6] 荣传新,王秀喜,蔡海兵,等. 基于流固耦合理论的煤矿立井井壁突水机理分析[J]. 煤炭学报, 2011, 36(12):2012-2108.
[7] 梁 通,金 峰. 基于广义有效应力原理的混凝土坝分析[J]. 水力发电学报, 2009, 28(2): 47-51.
[8] 李朝弟. 结构的安定性与极限分析[D]. 北京: 清华大学工程力学系, 1991.
[9] 徐秉业,刘信声.应用弹塑性力学[M].北京:清华大学出版社,1995.
[10]过镇海,王传志. 多轴应力下混凝土的强度破坏和破坏准则研究[J]. 土木工程学报,1991,24(3): 1-13.
[11]HWANG C, CHENG Y C. A Note on the Use of the Lambert W Function Subject to a Large Delay in a Laser System[J]. Automatica, 2005, 41: 1979-1985.
[12]李俊余,王在华. 一类时滞系统Hurwitz 稳定的简单判据[J]. 动力学与控制学报,2009,7(2): 136-142.
[13] GB50010—2010,混凝土结构设计规范[S]. 北京:中国建筑工业出版社,2010.
[14]KUPFER H, SHINOZUKA M, SCHUELLER G. Behavior of Concrete under Biaxial Stress[J]. American Concrete Institute, 1969, 66(8): 656-666.