PDF(1220 KB)
Flow Evolution of Dongting Lake During Three Gorges Reservoir Impoundment and Its Ecological Effects
CAO Yan-min, WANG Chong-yu, LI Xiao-dong, LU Liu-hu, HAN Shuai, ZHANG Han-qi, LIU Kang-gui
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (9) : 185-191.
PDF(1220 KB)
PDF(1220 KB)
Flow Evolution of Dongting Lake During Three Gorges Reservoir Impoundment and Its Ecological Effects
To scientifically and quantitatively evaluate the impact of Three Gorges Reservoir operations on the runoff and ecological characteristics of Dongting Lake, we analyzed daily flow data from four hydrological stations—Chenglingji, Shiguishan, Nanzui, and Xiaohezui—spanning 1988 to 2020. We employed the IHA-RVA method and Shannon index method to assess flow evolution and its ecological effects during the trial operation phase (2003-2008) and the post-trial operation phase (2009-2020) of the Three Gorges Reservoir. Our findings indicate that: (1) During the operation of the Three Gorges Reservoir, the proportions of water flowing into Dongting Lake from the Xiangshui River, Zishui River, Yuanjiang River, and Lishui River increased, while the proportions from the three outlets of Jingjiang River decreased.(2) In the trial operation phase, the overall changes in flow rate and IHA were greater than those in the post-trial phase, with Chenglingji and Shiguishan exhibiting overall changes of 67.27% and 69.55%, respectively.(3) During the trial operation phase, a reduction in the magnitude of downstream flow increases led to a decrease in both the daily flow rate positive difference (Rrate) and the Shannon index. However, in the post-trial phase, adherence to the “Zhicheng Dispatch” rules, which aimed to ensure small and medium-sized floods downstream and increase dry-season water supply, led to an increase in Rrate and a rebound in the Shannon index. These results provide a scientific basis for ensuring water safety and ecological health in Dongting Lake.
Dongting Lake / Range of Changes (RVA) / hydrological alteration / Shannon Index
| [1] |
|
| [2] |
|
| [3] |
李珍, 李相虎, 张丹, 等. 基于Copula的洞庭湖—流域—长江系统水文干旱概率分析[J]. 湖泊科学, 2022, 34(4): 1319-1334.
(
|
| [4] |
郭文献, 金耀广, 王鸿翔, 等. 近60年以来洞庭湖水文情势变异及生态效应[J]. 应用基础与工程科学学报, 2023, 31(1): 24-37.
(
|
| [5] |
李景保, 常疆, 吕殿青, 等. 三峡水库调度运行初期荆江与洞庭湖区的水文效应[J]. 地理学报, 2009, 64(11): 1342-1352.
(
|
| [6] |
李景保, 周永强, 欧朝敏, 等. 洞庭湖与长江水体交换能力演变及对三峡水库运行的响应[J]. 地理学报, 2013, 68(1): 108-117.
(
|
| [7] |
程俊翔, 徐力刚, 王青, 等. 洞庭湖近30 a水位时空演变特征及驱动因素分析[J]. 湖泊科学, 2017, 29(4): 974-983.
(
|
| [8] |
董世杰, 李英海, 吴江, 等. 近60年洞庭湖水位演变态势研究[J]. 湖泊科学, 2024, 36(2): 575-586.
(
|
| [9] |
王鸿翔, 查胡飞, 李越, 等. 三峡水库对洞庭湖水文情势影响评估[J]. 水力发电, 2019, 45(11): 14-18, 44.
(
|
| [10] |
王鸿翔, 朱永卫, 查胡飞, 等. 洞庭湖生态水位及其保障研究[J]. 湖泊科学, 2020, 32(5): 1529-1538.
(
|
| [11] |
|
| [12] |
隆院男, 吕倩, 闫世雄, 等. 洞庭湖水沙阶段性演变特征及驱动因素分析[J]. 长沙理工大学学报(自然科学版), 2023, 20(2): 55-69.
(
|
| [13] |
黄草, 周楚琪, 杨忆昕, 等. 洞庭湖北部枯水位变化及其对闸泵供水影响分析[J/OL]. 长沙理工大学学报(自然科学版). [2024-02-27]. http://kns.cnki.net/kcms/detail/43.1444.N.20240112.0955.002.html.
(
|
| [14] |
胡晓红, 周紧东, 董亚辰, 等. 荆南四河航运现状特征与发展规划研究[J]. 人民长江, 2020, 51(增刊2): 12-15.
(
|
| [15] |
肖潇, 毛北平, 吴时强. 近100年来长江与洞庭湖汇流河段水文特征演变[J]. 湖泊科学, 2021, 33(1): 266-276.
(
|
| [16] |
|
| [17] |
卢承志. 洞庭湖水利规划文集[M]. 长沙: 湖南科学技术出版社, 2009.
(
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
曹艳敏, 毛德华, 邓美容, 等. 日调节电站库区生态水文情势评价:以湘江干流衡阳站为例[J]. 长江流域资源与环境, 2019, 28(7): 1602-1611.
(
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
郑颖, 凌霞, 宋平. 平枯水期洞庭湖水域面积和水体容积变化及归因分析[J]. 长江技术经济, 2024, 8 (1): 28-34.
(
|
| [27] |
周建军, 张曼. 近年长江中下游径流节律变化、效应与修复对策[J]. 湖泊科学, 2018, 30(6): 1471-1488.
(
|
| [28] |
周建军, 曹广晶. 对长江上游水资源工程建设的研究与建议(Ⅰ)[J]. 科技导报, 2009, 27(9): 48-56.
(
|
| [29] |
翟婉盈, 湛若云, 卓海华, 等. 三峡水库蓄水不同阶段总磷的变化特征[J]. 中国环境科学, 2019, 39(12): 5069-5078.
(
|
| [30] |
周建军, 曹广晶. 对长江上游水资源工程建设的研究与建议(Ⅱ)[J]. 科技导报, 2009, 27(10): 43-51.
(
|
/
| 〈 |
|
〉 |