Numerical Simulation on the Effect of Groundwater Salinity on Freezing Temperature Field at the Bottom of Foundation Pit under Seepage Conditions

REN Ji-xun, JIA Lin, YANG Jian-xin, HU Jun, LIN Xiao-qi, ZENG Dong-ling

Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (1) : 151-158.

PDF(7890 KB)
PDF(7890 KB)
Journal of Changjiang River Scientific Research Institute ›› 2024, Vol. 41 ›› Issue (1) : 151-158. DOI: 10.11988/ckyyb.20220792
Rock-Soil Engineering

Numerical Simulation on the Effect of Groundwater Salinity on Freezing Temperature Field at the Bottom of Foundation Pit under Seepage Conditions

  • REN Ji-xun1, JIA Lin2, YANG Jian-xin3, HU Jun1, LIN Xiao-qi1, ZENG Dong-ling2
Author information +
History +

Abstract

Difference in groundwater salinity can impact the thermodynamic properties of soil. Understanding the influence of groundwater salinity on the freezing temperature field at the bottom of foundation pit under seepage condition is crucial for municipal underground engineering, mine engineering, and undersea tunnel construction. In this study, we employed the COMSOL hydrothermal coupling module to investigate the development pattern of the freezing temperature field at the bottom of a foundation pit with varying salinity of groundwater. Through thickness comparison and path analysis of the freezing wall, we determined the effect of groundwater salinity on freezing temperature field: when salinity exceeds 3%, seepage flow significantly affects the formation of the freezing curtain at the pit's bottom, and in particular, the downstream is more affected than the upstream. Furthermore, an increase in salinity leads to a gradual rise in the freezing curtain's temperature after an initial freezing period of 40 days. This increase in salinity is also accompanied by slower cooling rate, thinner freezing curtain, and consequently, poorer freezing effects.

Key words

freezing of foundation pit bottom / hydrothermal coupling / seepage field / salt content / numerical simulation

Cite this article

Download Citations
REN Ji-xun, JIA Lin, YANG Jian-xin, HU Jun, LIN Xiao-qi, ZENG Dong-ling. Numerical Simulation on the Effect of Groundwater Salinity on Freezing Temperature Field at the Bottom of Foundation Pit under Seepage Conditions[J]. Journal of Changjiang River Scientific Research Institute. 2024, 41(1): 151-158 https://doi.org/10.11988/ckyyb.20220792

References

[1] 周泽栖, 刘 春, 唐 超. 基坑工程对既有隧道结构稳定性影响研究现状分析[J]. 四川建筑, 2021, 41(4):158-160.(ZHOU Ze-xi, LIU Chun, TANG Chao. Analysis on the Research Status of the Influence of Foundation Pit Engineering on the Stability of Existing Tunnel Structure[J]. Sichuan Architecture, 2021, 41(4): 158-160.(in Chinese))
[2] 吴 波, 陈辉浩, 黄 惟, 等. 基于FAHP-GRA理论的深基坑涌水涌砂风险评价[J]. 铁道科学与工程学报, 2021, 18(8): 2209-2216.(WU Bo, CHEN Hui-hao, HUANG Wei, et al. Risk Assessment of Water and Sand Gushing in Deep Foundation Pit Based on the FAHP-GRA Theory[J]. Journal of Railway Science and Engineering, 2021, 18(8): 2209-2216.(in Chinese))
[3] 向 亮, 尹陇娟. 第三系富水粉细砂岩地层基坑冻结加固研究[J]. 铁道标准设计, 2021, 65(1): 81-88,121.(XIANG Liang, YIN Long-juan. Study on Freezing Reinforcement of Foundation Pit in Tertiary Water-rich Fine Sandstone[J]. Railway Standard Design, 2021, 65(1): 81-88, 121.(in Chinese))
[4] 高景岐.冻结法在北方深基坑支护工程中应用与研究[J]. 中国市政工程, 2018(2): 62-64, 132.(GAO Jing-qi. Application & Research of Freezing Method in Deep Foundation Pit Support Project in North China[J]. China Municipal Engineering, 2018(2): 62-64, 132.(in Chinese))
[5] 韩 翔. 暗挖基坑盆形冻结底板受力变形研究[D]. 徐州: 中国矿业大学, 2020.(HAN Xiang. Research on Stress Deformation of Basin-shaped Frozen Floor of Underground Excavation[D]. Xuzhou: China University of Mining and Technology, 2020. (in Chinese))
[6] 苏彦林.地下水流速和地层含盐量对人工冻结温度场影响[D].石家庄:石家庄铁道大学,2020.(SU Yan-lin.Influence of Groundwater Velocity and Soil Salt Content on the Temperature Field of Artificial Freezing[D].Shijiazhuang:Shijiazhuang Tiedao University,2020.(in Chinese))
[7] 杨 凡, 荣传新, 王 彬, 等. 大流速地下水作用下冻结法凿井单圈冻结孔优化布置方法研究[J]. 煤炭工程, 2019, 51(12):5-12.(YANG Fan, RONG Chuan-xin, WANG Bin, et al. Study on Optimal Arrangement Method of Freezing Holes in Single-circle of Freezing Method with High Seepage Groundwater[J]. Coal Engineering, 2019, 51(12): 5-12.(in Chinese))
[8] 刘建刚, 刘 泉, 周冬冬, 等. 地下水横向水平流速对人工水平冻结壁形成的影响[J]. 应用基础与工程科学学报, 2017, 25(2): 258-265.(LIU Jian-gang, LIU Quan, ZHOU Dong-dong, et al. Influence of Groundwater Transverse Horizontal Flow Velocity on the Formation of Artificial Horizontal Freezing Wall[J]. Journal of Basic Science and Engineering, 2017, 25(2): 258-265.(in Chinese))
[9] HUANG R C, CHANG M, TSAIC Y S, et al. Influence of Seepage Flow on Temperature Field around an Artificial Frozen Soil through Model Testing and Numerical Simulations[C]∥Association of Geotechnical Societies in Southeast Asia ,Proceedings of the 18th Southeast Asian Geotechnical Conference (18SEAGC) & Inaugural AGSSEA Conference (1AGSSEA),May 29-31,2013, Singapore: Research Publishing Services, 2013: 973-978.
[10] 董艳宾, 荣传新, 王 彬, 等. 大流速地下水作用下多圈冻结孔优化布置方法研究[J]. 煤矿安全, 2020, 51(4): 18-25.(DONG Yan-bin, RONG Chuan-xin, WANG Bin, et al. Study on Optimal Arrangement Method of Multi-circle Frozen Hole under Action of Large Velocity Groundwater[J]. Safety in Coal Mines, 2020, 51(4): 18-25.(in Chinese))
[11] VITEL M, ROUABHI A, TIJANI M, et al. Modeling Heat and Mass Transfer during Ground Freezing Subjected to High Seepage Velocities[J]. Computers and Geotechnics, 2016, 73: 1-15.
[12] VITEL M, ROUABHI A, TIJANI M, et al. Thermo-Hydraulic Modeling of Artificial Ground Freezing: Application to an Underground Mine in Fractured Sandstone[J]. Computers and Geotechnics, 2016, 75: 80-92.
[13] 苏文德. 冻结工法在富集海水地层下地铁联络通道施工中的应用研究[J]. 水利与建筑工程学报, 2019, 17(3):181-186.(SU Wen-de. Application of Freezing Method in the Construction of Subway Connecting Aisle under the Enriched Seawater Stratum[J]. Journal of Water Resources and Architectural Engineering, 2019, 17(3): 181-186.(in Chinese))
[14] QIN B, RUI D, JI M, et al. Research on Influences of Groundwater Salinity and Flow Velocity on Artificial Frozen Wall[J]. Transportation Geotechnics, 2022, 34,DOI: 10.1016/j.trgeo.2022.100739.
[15] ZHOU L, ZHOU F, YING S, et al. Study on Water and Salt Migration and Deformation Properties of Unsaturated Saline Soil under a Temperature Gradient Considering Salt Adsorption: Numerical Simulation and Experimental Verification[J]. Computers and Geotechnics, 2021, 134, DOI:10.1016/j.compgeo.2021.104094.
[16] 吕 龙,王述红.基坑越冬水热耦合及防护技术机理研究[J].水利与建筑工程学报,2021,19(4):87-92.(LÜ Long,WANG Shu-hong.Water-heat Coupling and Protection Technology for Foundation Pit Overwintering[J]. Journal of Water Resources and Architectural Engineering,2021,19(4):87-92.(in Chinese))
[17] 孙 豹, 王乾峰, 徐童淋, 等. 冻融劣化混凝土压剪作用下力学特性及破坏准则[J]. 水利水运工程学报,2019(4):107-115.(SUN Bao, WANG Qian-feng, XU Tong-lin, et al. Mechanical Properties and Failure Criterion of Freeze-thaw Deteriorated Concrete under Compressive-shear Stress[J]. Hydro-Science and Engineering, 2019(4): 107-115.(in Chinese))
[18] 何世钦, 贡金鑫, 赵国藩. 冻融循环下混凝土中氯离子的扩散性[J]. 水利水运工程学报,2004(4):32-36.(HE Shi-qin, GONG Jin-xin, ZHAO Guo-fan. Diffusibility of Chloride Ion in Concrete Subjected to Freeze-thaw Cycles[J]. Hydro-Science and Engineering, 2004(4): 32-36.(in Chinese))
[19] 毛雪松,王秉纲,胡长顺,等.冻土路基水热迁移问题的理论模型及数值模拟[J].中外公路,2006,26(1):23-26.(MAO Xue-song, WANG Bing-gang, HU Chang-shun, et al. Theoretical Model and Numerical Simulation of Water and Heat Transfer in Frozen Soil Subgrade[J]. Journal of China & Foreign Highway, 2006, 26(1): 23-26.(in Chinese))
[20] 胡 庄. 南宁地铁新广区间联络通道冻结加固水热耦合规律研究[D]. 海口: 海南大学,2022.(HU Zhuang. Hydrothermal Coupling Evolution in Freezing Reinforcement of Connecting Passage between Guangxi University Station and Xinxin Park Station[D]. Haikou: Hainan University, 2022.(in Chinese))
[21] 胡 俊. 水泥改良前后土体冻结温度及力学特性试验研究[J]. 铁道建筑, 2013, 43(4): 156-159.(HU Jun. Experimental Study on Freezing Temperature and Mechanical Performance of Soil before and after Cement-improving[J]. Railway Engineering, 2013, 53(4): 156-159.(in Chinese))
[22] 胡 俊. 高水压砂性土层地铁大直径盾构始发端头加固方式研究[D]. 南京: 南京林业大学,2012.(HU Jun. Study on the Reinforcement Methods of Subway Large-diameter Shield Launching in the Sandy Clay with High Water Pressure[D]. Nanjing: Nanjing Forestry University, 2012. (in Chinese))
[23] 北京石油化工工程公司. 氯碱工业理化常数手册[M]. 修订本. 北京: 化学工业出版社, 1988.(Beijing Petrochemical Engineering Company.Handbook of Physical and Chemical Constants of Chlor-alkali Industry[M]. Beijing: Chemical Industry Press, 1988.(in Chinese))
PDF(7890 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map