Spatial Distribution Characteristics of Groundwater Chemical Composition in Shaliu River Basin of Qinghai Lake

WANG You-cai, CAO Sheng-kui, CAO Guang-chao, KANG Li-gang

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (11) : 42-50.

PDF(10653 KB)
PDF(10653 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (11) : 42-50. DOI: 10.11988/ckyyb.20220777
Water Environment and Water Ecology

Spatial Distribution Characteristics of Groundwater Chemical Composition in Shaliu River Basin of Qinghai Lake

  • WANG You-cai1,2, CAO Sheng-kui1,2,3, CAO Guang-chao1,2,3, KANG Li-gang1,2
Author information +
History +

Abstract

The spatial distribution of groundwater hydrochemical components plays a crucial role in effectively managing and safeguarding groundwater resources. Based on hydrochemical composition data obtained from the Shaliu River basin of Qinghai Lake in different typical months, we investigated the spatial distribution and heterogeneity of major groundwater hydrochemical components including anion content, pH value, and total dissolved solids (TDS) by using geological information system (GIS) spatial analysis. The findings of this study are summarized as follows: 1) Different months exhibited significant variations in the spatial distributions of anions and cations. The discrepancies in ion distributions were more prominent in June compared to January and October. Compared to January, June experienced a decrease in the extent of high-value regions for the concentrations of K+, Na+, F-, and SO42-, while an expansion in the high-value regions for Ca2+, Mg2+, and HCO-3. Conversely, the high-value and low-value regions for NO-3 content underwent no substantial changes. In October, the high-value regions for Ca2+, Mg2+, NO-3, and HCO-3 content further shrank compared to June, whereas the high-value regions for K+, Na+, F-, and SO42- contents expanded.During the study period, the spatial distribution of Cl- concentration did not change significantly. 2)The main cations in the Shaliu River basin of Qinghai Lake were affected by carbonate weathering, while silicate weathering was observed in the lower reaches of the basin. 3) Most ions in the basin roughly converged from the middle and upper reaches of the basin to the estuary, and then dispersed to the estuary delta.

Key words

shallow groundwater / hydrochemical composition / spatial distribution / Shaliu River Basin / Qinghai Lake

Cite this article

Download Citations
WANG You-cai, CAO Sheng-kui, CAO Guang-chao, KANG Li-gang. Spatial Distribution Characteristics of Groundwater Chemical Composition in Shaliu River Basin of Qinghai Lake[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(11): 42-50 https://doi.org/10.11988/ckyyb.20220777

References

[1] 李文鹏, 郝爱兵, 李 鹏, 等. 对我国干旱区地下水资源的几点认识[J]. 水文地质工程地质, 1996, 23(5): 14-15.
[2] 金章东, 石岳威, 张 飞. 青海湖流域浅层地下水补给来源及其水位变化[J]. 地球环境学报, 2010, 1(3): 169-174.
[3] 李书鉴, 韩 晓, 王文辉, 等. 无定河流域地表水地下水的水化学特征及控制因素[J]. 环境科学, 2022, 43(1): 220-229.
[4] 陈宗宇, 王 莹, 刘 君, 等. 近50年来我国北方典型区域地下水演化特征[J]. 第四纪研究, 2010, 30(1): 115-126.
[5] 郭 艺, 甘甫平, 闫柏琨, 等. 青藏高原西南地区地表水水化学同位素特征及控制因素分析[J]. 华北水利水电大学学报(自然科学版), 2022, 43(6): 96-107.
[6] 陈发虎,汪亚峰,甄晓林,等.全球变化下的青藏高原环境影响及应对策略研究[J].中国藏学,2021(4):21-28.
[7] 季雨桐, 曹生奎, 曹广超, 等. 青海湖沙柳河流域夏季河水和地下水水化学特征[J]. 青海师范大学学报(自然科学版), 2021, 37(2): 63-75.
[8] 王欣语,高 冰.青海湖水量平衡变化及其对湖水位的影响研究[J].水力发电学报,2021,40(10):60-70.
[9] HENDERSON A C G, HOLMES J A, LENG M J. Late Holocene Isotope Hydrology of Lake Qinghai, NE Tibetan Plateau: Effective Moisture Variability and Atmospheric Circulation Changes[J]. Quaternary Science Reviews, 2010, 29(17/18): 2215-2223.
[10] 雷义珍, 曹生奎, 曹广超, 等. 青海湖沙柳河流域不同时期地表水与地下水的相互作用[J]. 自然资源学报, 2020, 35(10): 2528-2538.
[11] 张 琨, 蓝江湖, 沈振兴, 等. 青海湖流域水化学分析及水质初步评价[J]. 地球环境学报, 2010, 1(3): 162-168.
[12] XIAO J, JIN Z, ZHANG F. Geochemical and Isotopic Characteristics of Shallow Groundwater within the Lake Qinghai Catchment, NE Tibetan Plateau[J]. Quaternary International, 2013, 313/314: 62-73.
[13] 侯昭华, 徐 海, 安芷生. 青海湖流域水化学主离子特征及控制因素初探[J]. 地球与环境, 2009, 37(1): 11-19.
[14] 李岳坦, 李小雁, 崔步礼, 等. 青海湖流域50年来(1956—2007年)河川径流量变化趋势: 以布哈河和沙柳河为例[J]. 湖泊科学, 2010, 22(5): 757-766.
[15] 吴华武, 李小雁, 赵国琴, 等. 青海湖流域降水和河水中δ18O和δD变化特征[J]. 自然资源学报, 2014, 29(9): 1552-1564.
[16] 杨羽帆.基于氢氧稳定同位素技术的青海湖沙柳河流域降水径流过程研究[D].西宁:青海师范大学, 2019.
[17] 雷义珍, 曹生奎, 曹广超, 等. 基于氢氧稳定同位素和水化学的青藏高原高寒内陆流域水文过程示踪研究[J]. 地理研究, 2021, 40(5): 1239-1252.
[18] 刚察县志编纂委员会. 刚察县志[M]. 西安: 陕西人民出版社, 1997.
[19] 国家科技资源共享服务平台—国家地球系统科学数据中心[DB/OL].[2022-07-01].http:∥www.geodata.cn.
[20] 杨羽帆, 曹生奎, 冯 起, 等. 青海湖沙柳河流域浅层地下水氢氧稳定同位素分布特征[J]. 中国沙漠, 2019, 39(5): 45-53.
[21] 中国科学院计算机网络信息中心.地理空间数据云平台[DB/OL].[2022-07-01].http:∥www.gscloud.cn.
[22] 沈回归, 饶文波, 谭红兵, 等. 高寒区典型流域地下水化学特征、影响因素及健康风险[J]. 河海大学学报(自然科学版), 2022, 50(6): 9-17.
[23] 季雨桐. 沙柳河流域河水和地下水水化学特征及水质评价研究[D]. 西宁: 青海师范大学, 2021.
[24] 罗 进, 安艳玲, 吴起鑫, 等. 赤水河中下游冬季河水化学空间分布特征分析[J]. 地球与环境, 2014, 42(3): 297-305.
[25] 林聪业, 孙占学, 高 柏, 等. 拉萨地区地下水水化学特征及形成机制研究[J]. 地学前缘, 2021, 28(5): 49-58.
[26] 黄 丽, 张心昱, 袁国富, 等. 我国典型陆地生态系统水化学离子特征及空间分布[J]. 环境科学, 2019, 40(5): 2086-2093.
[27] 刘 影, 王中美, 杨秀丽, 等. 贵安新区东部岩溶地下水水化学特征[J]. raybet体育在线 院报, 2022, 39(1): 39-46.
[28] 安丽娜, 姚晓军, 杨 东, 等. 喜马拉雅山中段北坡地表水体主要离子特征及其控制因素: 以叶如藏布流域为例[J]. 环境科学学报, 2017, 37(7): 2524-2530.
[29] 赵楠芳, 鄢笑宇, 李 青, 等. 鄱阳湖环湖区浅层地下水化学特征及形成机制[J]. 人民长江, 2021, 52(1): 44-48.
[30] 蒲 焘. 基于水化学与同位素的典型海洋型冰川流域水文过程研究[D]. 兰州: 兰州大学, 2013: 78-79.
[31] 何明霞, 张 兵, 夏文雪, 等. 天津七里海湿地水化学组成及主要离子来源分析[J]. 环境科学, 2021, 42(2): 776-785.
[32] 李甜甜, 季宏兵, 江用彬, 等. 赣江上游河流水化学的影响因素及DIC来源[J]. 地理学报, 2007,62(7): 764-775.
[33] 郭亚文, 田富强, 胡宏昌,等. 南小河沟流域地表水和地下水的稳定同位素和水化学特征及其指示意义[J]. 环境科学, 2020, 41(2): 682-690.
PDF(10653 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map