Influence of Sediment Concentration on Silting Thickness in Immersed Tube Base Groove

FENG Xian-dao, HAN Peng-peng, QIU Zheng-zhong, WANG Cong

Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (8) : 10-15.

PDF(6259 KB)
PDF(6259 KB)
Journal of Changjiang River Scientific Research Institute ›› 2023, Vol. 40 ›› Issue (8) : 10-15. DOI: 10.11988/ckyyb.20220383
River-Lake Protection and Regulation

Influence of Sediment Concentration on Silting Thickness in Immersed Tube Base Groove

  • FENG Xian-dao1,2,3,4 , HAN Peng-peng1, QIU Zheng-zhong1, WANG Cong2,3,4
Author information +
History +

Abstract

Following the construction of immersed tube base groove in inland river, the flow of water through the groove leads to the deposition of silt within it. To obtain the distribution of silting thickness in tube base groove, this paper focuses on the Xiangyang immersed tube tunnel project. By combining observation with numerical simulation, we obtain the silting thickness of the base groove at different positions, and examine the influence of sediment concentration in the river on the silting thickness in tube base groove. Results demonstrate that sediment concentration in the direction vertical to the groove increases as the water depth increases. As water flows through the groove, the reduced flow velocity results in a decreased sediment carrying capacity. Consequently, the silting is mainly concentrated in the front slope and the base groove, whereas the thickness of silting is minimal in the back slope of the groove. After the installation of immersed tube, the flow area of the groove decreases, leading to a larger silting thickness at the bottom of the immersed tube compared to the top.

Key words

silting thickness / sediment concentration / immersed tube base groove / scour and siltation terrain / flow field distribution

Cite this article

Download Citations
FENG Xian-dao, HAN Peng-peng, QIU Zheng-zhong, WANG Cong. Influence of Sediment Concentration on Silting Thickness in Immersed Tube Base Groove[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(8): 10-15 https://doi.org/10.11988/ckyyb.20220383

References

[1] DISSANAYAKE D M P K,ROELVINK J A,VAN DER WEGEN M. Modelled Channel Patterns in a Schematized Tidal Inlet[J].Coastal Engineering,2009,56(11/12):1069-1083.
[2] 曹影峰, 李兴高, 杨 益. 深中通道沉管隧道基槽回淤及边坡稳定性研究[J]. 岩土工程学报, 2020, 42(7): 1350-1358.
[3] 辛文杰,贾雨少,何 杰.港珠澳大桥沉管隧道试挖槽回淤特征分析[J].水利水运工程学报,2012(2):71-78.
[4] 曹慧江, 肖烈兵. 港珠澳大桥岛隧工程沉管基槽开挖回淤强度研究[J]. 水运工程, 2012(1): 12-17.
[5] 傅鹤林, 董子龙, 洪开荣, 等. 内河交汇处沉管隧道基槽回淤厚度研究[J]. raybet体育在线 院报, 2022, 39(10): 103-108.
[6] 许春阳, 罗 雯, 陈永平, 等. 细颗粒泥沙制约沉降速度计算方法综述[J]. 泥沙研究, 2022, 47(1):73-80.
[7] 李慧梅,陈建国,袁玉萍.高含沙浑水在絮凝剂作用下的絮凝沉降试验研究[J].泥沙研究,2006(4):73-77.
[8] 刘俊秀,吉祖稳,王党伟. 黏性细颗粒泥沙絮凝试验研究综述[J]. 泥沙研究,2019,44(2):63-68.
[9] 黄 颖. 水库下游河床调整及防护措施研究[D]. 武汉: 武汉大学,2005.
[10] 黄才安. 冲积河流水流泥沙运动基本规律的研究[D]. 南京: 河海大学,2003.
[11] 周 双. 推移质泥沙随机起动与输移机理研究[D]. 杨凌: 西北农林科技大学,2021.
[12] 钱七虎. 从河床冲淤分析沉管法修建长江水下隧道问题[J]. 现代隧道技术, 2006, 43(4): 1-4.
[13] 陈雄波. 挟沙水流数值模拟中若干关键技术的研究[D]. 南京: 河海大学, 2004.
[14] 白 静. 悬移质泥沙输移的大涡模拟研究[D]. 北京: 清华大学,2013 .
[15] 孟 震. 推移质运动基本规律研究[D]. 北京: 清华大学, 2015 .
[16] 谢鉴衡.河流泥沙工程学(上册)[M]. 北京:水利电力出版社,1981.
[17] 沙玉清.泥沙运动的基本规律:开动流速[J]. 泥沙研究,1956(2):14-25.
[18] TE SLAA S, VAN MAREN D S, HE Q, et al. Hindered Settling of Silt[J]. Journal of Hydraulic Engineering, 2015, 141(9): 1-13.
[19] BALDOCK T E, TOMKINS M R, NIELSEN P, et al. Settling Velocity of Sediments at High Concentrations[J]. Coastal Engineering,2004,51(1):91-100.
PDF(6259 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map