The structure of sodium sulfate saline soil is prone to change with seasonal temperature, which is detrimental to projects. To study the freezing temperature characteristics of sodium sulfate saline soil under unidirectional freezing condition, we carried out unidirectional freezing test by using a controlled temperature freezer on indoor-prepared samples with initial moisture content of 15%, 17%, 19% and 21% and salt content of 0%, 1%, 2%, 3% and 5%. Results manifest that: 1) The time required to reach freezing temperature differs slightly at different locations in the same soil despite the same freezing temperature. 2) The initial moisture content and salinity of sulfate saline soil has a remarkable influence on freezing temperature. When the salinity of sodium sulfate is 1% and 2%, the freezing temperature first changes sharply but then gently with the increase of initial water content; the maximum freezing temperature is reached at optimal water content, and afterwards, the curve of freezing temperature tends to be flat with the change of initial water content. When salt content is high (5%), the freezing temperature rises linearly with the increase of initial water content. 3) The freezing temperature of sodium sulfate saline soil declines with the increase of salt content. When salt content is 1%-2%, the freezing temperature of soil with different water content and the time required to reach freezing temperature all presents a trend of “normalization”. Sodium sulfate solution should be regarded as a non-ideal dilute solution in the calculation of freezing temperature of sodium sulfate saline soil. In addition, at the same initial water content, the relationship between sodium sulfate salt content and freezing temperature can be well fitted by cubic polynomial.
Key words
sodium sulfate saline soil /
unidirectional freezing /
freezing temperature /
moisture content /
salt content
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 徐攸在,史桃开.青海西部盐渍土的承载力和溶陷变形特性[J].工业建筑,1991(3):2-7.
[2] 邴 慧,马 巍.盐渍土冻结温度的试验研究[J].冰川冻土,2011,33(5):1106-1113.
[3] 肖泽岸,赖远明,尤哲敏.单向冻结过程中NaCl盐渍土水盐运移及变形机理研究[J].岩土工程学报,2017,39(11):1992-2001.
[4] 刘建坤,于钱米,刘景宇,等. 细粒土不均匀分布对粗粒土力学特性的影响[J].岩土工程学报,2017,39(3):562-572.
[5] 胡田飞,刘建坤,房建宏,等.冻融循环下冷却温度对粉质黏土力学性质影响的试验研究[J].岩石力学与工程学报,2017,36(7):1757-1767.
[6] 王景辉,张卫兵,唐 莲,等.水盐运移对硫酸盐渍土盐-冻胀规律的影响[J].raybet体育在线
院报,2021,38(6):108-115.
[7] 魏 尧,杨更社,叶万军.冻结温度对冻融黄土力学特性的影响规律研究[J].raybet体育在线
院报,2018,35(8):61-66.
[8] 栗晓林,王红坚,牛永红.不同加载速率下冻结黏土的强度及破坏特性[J].岩土工程学报,2017,39(12):2335-2340.
[9] 吴亚平,王 宁,潘高峰,等.青海北部高含盐细砂冻胀特性研究[J].冰川冻土,2018,40(2):307-313.
[10] 李国锋,李 宁,刘乃飞,等.基于FLAC3D的含相变三场耦合简化算法[J].岩石力学与工程学报,2017,36(增刊2):3841-3851.[11] 应 赛,周凤玺,文 桃,等.硫酸盐渍土降温过程中的盐胀与冻胀特性[J].raybet体育在线
院报,2021,38(6):116-122.
[12] BING Hui, MA Wei. Laboratory Investigation of the Freezing Point of Saline Soil[J]. Cold Regions Science and Technology, 2011, 67(1): 79-88.
[13] 崔广心,李 毅.有压条件下湿砂结冰温度的研究[J].冰川冻土,1994,16(4):320-326.
[14] 李 毅,崔广心,吕恒林.有压条件下湿粘土结冰温度的研究[J].冰川冻土,1996,18(1):45-48.
[15] 马 敏,邴 慧,李国玉,硫酸钠盐渍土未冻水含量的实验研究[J].冰川冻土,2016.38(4): 963-969.
[16] WAN X, LAI Y, WANG C. Experimental Study on the Freezing Temperatures of Saline Silty Soils[J]. Permafrost and Periglacial Processes, 2015, 26(2): 175-187.
[17] WANG Chong, LAI Yuan-ming, YU Fan, et al. Estimating the Freezing-Thawing Hysteresis of Chloride Saline Soils Based on the Phase Transition Theory[J]. Applied Thermal Engineering, 2018, 135(4): 22-33.
[18] 万旭升,赖远明.硫酸钠溶液和硫酸钠盐渍土的冻结温度及盐晶析出试验研究[J].岩土工程学报,2013,35(11):2090-2096.
[19] 王景辉,基于冻融循环的宁夏地区硫酸盐渍土水盐运移和盐-冻胀规律研究[D]. 银川:宁夏大学,2019.
[20] ZHOU Jia-zuo, WEI Chang-fu, LAI Yuan-ming, et al. Application of the Generalized Clapeyron Equation to Freezing Point Depression and Unfrozen Water Content[J]. Water Resources Research, 2018, 54(11): 9412-9431.