Rankine’s theory is limited to solving the earth pressure where the wall back is vertical and smooth and the displacement of the fill behind the wall reaches the limit state. It is of great significance to carry out theoretical research for non-limit active earth pressure on inclined rough wall backs. The viscous fill slipper behind the wall is divided into two parts, the elastic region and the plastic region. Based on the principle of virtual work in the non-limit state, an energy conservation equation is established, and the formulas for tension crack depth and potential slip surface are derived. On this basis, the expressions for horizontal stress and vertical stress are obtained through the Mohr stress circle in consideration of the soil arch effect. Moreover, the theoretical expressions for the non-limiting active earth pressure distribution,the magnitude of the resultant force,and the position of the resultant force’s action point are derived by establishing the force balance equation using the horizontal layer analysis method. When the Rankine’s hypothesis is met, the Rankine’s crack depth, slip surface inclination, and resultant force values are special solutions. The validity of the formulas is verified by two model tests. The research manifests that the tensile crack depth is positively correlated with the internal friction angle φm of the fill, the cohesion cm of the fill, the wall-soil friction angle δm, the wall-soil cohesion cwm, and the wall displacement ratio η, while negatively correlated with wall back inclination ε. The inclination angle of the potential slip surface has nothing to do with cm, but increases with the growth of ε, φm, and η, while the influence of δm and cm is opposite. When the wall back is smooth, the earth pressure is approximately linearly distributed, and the position of the resultant force is close to that obtained from the Rankine’s solution; when the wall back is rough, the earth pressure distributes in a convex curve, with the upper part larger than the Rankine’s solution, and the lower part smaller than the Rankine’s solution. Earth pressure declines with the increase of η, φm, and cm, and its peak value increases with the shrinkage of ε, but is rarely affected by cwm. The position of the resultant force acting point can only be lower than the Rankine’s solution in the presence of large displacement of the inclined retaining wall.
Key words
inclined retaining wall /
cohesive backfill /
principle of virtual work /
crack depth /
soil arching /
non-limit active earth pressure
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] SHERIF M A, FANG Y S, SHERIF R I. Ka and K0 behind Rotating and Non-yielding Walls[J]. Journal of Geotechnical Enginerring, 1984, 110(1): 41-56.
[2] FANG Y S, ISHIBASHI I. Static Earth Pressures with Various Wall Movements[J]. Journal of Geotechnical Engineering, 1986, 112(3): 317-333.
[3] 周应英,任美龙.刚性挡土墙主动土压力的试验研究[J].岩土工程学报,1990,12(2):19-26.
[4] 杨 斌,胡立强.挡土结构侧土压力与水平位移关系的试验研究[J].建筑科学,2000(2):14-20.
[5] CHANG M F. Lateral Earth Pressures Behind Rotating Walls[J]. Canadian Geotechnical Journal, 1997, 34(2): 498-509.
[6] 卢坤林, 杨 扬. 非极限主动土压力计算方法初探[J].岩土力学,2010,31(2):615-619.
[7] 应宏伟,蒋 波,谢康和.考虑土拱效应的挡土墙主动土压力分布[J].岩土工程学报,2007,29(5):717-722.
[8] 吴 明, 彭建兵, 徐 平, 等. 考虑土拱效应的挡墙后土压力研究[J]. 工程力学, 2011, 28(11): 89-96.
[9] 陈建旭, 郭 宁, 虞佳颖, 等. 刚性挡墙非极限被动土压力计算方法[J].raybet体育在线
院报,2020,37(11):107-113,135.
[10] 彭明祥.挡土墙主动土压力塑性临界深度的解析解[J].岩土力学, 2010, 31(10): 3179-3183.
[11] 刘 杰,黄 达,赵 飞,等.平移模式下挡墙塑性临界深度极限分析[J]. 岩土力学, 2017, 38(2): 428-434.
[12] 王奎华, 马少俊, 吴文兵. 挡土墙后曲面滑裂面下黏性土主动土压力计算[J]. 西南交通大学学报, 2011, 46(5): 732-738.
[13] 陈建功, 杨 扬, 陈彦含,等. 考虑抗拉强度的黏性填土挡土墙主动土压力计算[J].岩土力学, 2020, 41(6): 1829-1835,1844.
[14] 涂兵雄, 贾金青. 考虑土拱效应的黏性填土挡土墙主动土压力研究[J].岩石力学与工程学报,2012,31(5):1064-1070.
[15] 王学民,宋洪港,李义唐,等.考虑土拱效应和黏聚力的倾斜挡墙非极限主动土压力[J].兰州理工大学学报, 2018, 44(3): 123-127.
[16] 赵 琦,朱建明.临近地下室外墙影响下的考虑土拱效应的挡土墙主动土压力研究[J].岩土力学,2014,35(3):723-728.
[17] 徐日庆, 廖 斌, 吴 渐, 等. 黏性土的非极限主动土压力计算方法研究[J].岩土力学, 2013, 34(1):148-154.
[18] 徐日庆, 徐叶斌, 程 康, 等. 有限土体下考虑土拱效应的非极限主动土压力解[J].岩土工程学报,2020,42(2):362-371.
[19] 娄培杰. 黏性土填料下考虑土拱效应的非极限主动土压力计算方法[J].岩土力学, 2015, 36(4): 988-994,1014.
[20] FEDERICO A, ELIA G, GERMANO V. A Short Note on the Earth Pressure and Mobilized Angle of Internal Friction in One-dimensional Compression of Soils[J]. Journal of Geoengineering, 2008, 3(1): 41-46.