Method of Three-dimensional Monitoring on Permafrost around Lake Draining Project on the Qinghai-Tibetan Plateau

LANG Yong-biao, ZHENG Yun, JIN Wei, MU Yan-hu, CHAI Ming-tang

Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (6) : 45-51.

PDF(2374 KB)
PDF(2374 KB)
Journal of Changjiang River Scientific Research Institute ›› 2021, Vol. 38 ›› Issue (6) : 45-51. DOI: 10.11988/ckyyb.20200214
ENGINEERING SAFETY AND DISASTER PREVENTION

Method of Three-dimensional Monitoring on Permafrost around Lake Draining Project on the Qinghai-Tibetan Plateau

  • LANG Yong-biao1, ZHENG Yun2, JIN Wei1, MU Yan-hu3, CHAI Ming-tang3
Author information +
History +

Abstract

Affected by climate warming and wetting, the number and area of lakes in the Qinghai-Tibetan Plateau have seen evident increases in recent years, resulting in lake overflow and even outbursts. Such threats to the security of lives and property of people and the safe operation of major engineering infrastructure can be alleviated by lake drainage project which diverts the overflow safely under control to the downstream area. However, in permafrost region, engineering activities and long-term water flow will lead to significant variations in hydrothermal regime. These variations will further affect local ecological environment and long-term stability of drainage projects. With the Yanhu Lake in Hoh Xil region as a background, we present a method combing InSAR, drone aerial photography, meteorological observation, ground temperature observation and geophysical exploration to establish a three-dimensional monitoring system on permafrost. The method considers the characteristics of permafrost in the region and the components of the drainage project. By using the present method, we could monitor synchronously the local meteorological conditions, the hydrothermal regimes of permafrost, and the stability of engineering structures. The monitoring work will provide data support for evaluating the impacts of drainage project on permafrost, and serve for prediction and early warning on the stability and service ability of engineering structures. The collected data will also offer important references for design, construction and maintaining of hydraulic infrastructure built on permafrost in the future.

Key words

lake outburst / drainage project / permafrost / field monitoring / Qinghai-Tibetan Plateau

Cite this article

Download Citations
LANG Yong-biao, ZHENG Yun, JIN Wei, MU Yan-hu, CHAI Ming-tang. Method of Three-dimensional Monitoring on Permafrost around Lake Draining Project on the Qinghai-Tibetan Plateau[J]. Journal of Changjiang River Scientific Research Institute. 2021, 38(6): 45-51 https://doi.org/10.11988/ckyyb.20200214

References

[1] 周幼吾,郭东信,邱国庆,等. 中国冻土[M]. 北京:科学出版社, 2000.
[2] JIN Hui-jun, LI Shu-xun, CHENG Guo-dong, et al. Permafrost and Climatic Change in China[J]. Global and Planetary Change, 2000, 26: 387-404.
[3] JIN Hui-jun, YU Qi-hao, WANG Shao-ling, et al. Changes in Permafrost Environments along the Qinghai-Tibet Engineering Corridor Induced by Anthropogenic Activities and Climate Warming[J]. Cold Regions Science and Technology, 2006, 53:317-333.
[4] MA Wei, CHENG Guo-dong, WU Qing-bai. Construction on Permafrost Foundations: Lessons Learned from the Qinghai-Tibet Railroad[J]. Cold Regions Science and Technology, 2009, 59:3-11.
[5] 马荣华, 杨桂山, 段洪涛, 等. 中国湖泊的数量、面积与空间分布[J]. 中国科学:地球科学, 2011, 41(3): 394-401.
[6] 闫立娟, 郑绵平, 魏乐军. 近40年来青藏高原湖泊变迁及其对气候变化的响应[J]. 地学前缘, 2016, 23(4): 310-323.
[7] 梁 斌, 齐 实, 李智勇, 等. 青藏高原湖泊面积动态变化及其对气候变化的响应[J]. 山地学报, 2018, 36(2): 206-216.
[8] 刘宝康, 李 林, 杜玉娥, 等. 青藏高原可可西里卓乃湖溃堤成因及其影响分析[J]. 冰川冻土, 2016, 38(2):305-311.
[9] 姚晓军, 刘时银, 孙美平, 等. 可可西里地区库赛湖变化及湖水外溢成因[J]. 地理学报, 2012, 67(5): 689-698.
[10] LIU Wen-hui, XIE Chan-wei, ZHAO Lin. Dynamic Changes in Lakes in the Hoh Xil Region Before and After the 2011 Outburst of Zonag Lake[J]. Journal of Mountain Science, 2019, 16(5): 1098-1110.
[11] 马 巍,穆彦虎,谢胜波,等. 青藏高速公路修筑对冻土工程走廊的热力影响及环境效益[J]. 地球科学进展, 2017, 32(5):459-464.
[12] 徐学祖,王家澄,张立新.冻土物理学[M]. 北京: 科学出版社,2001.
[13] LUTIN J N, GUYMON G L. Soil Moisture-Vegetation-Temperature Relationships in Central Alaska[J]. Journal of Hydrology, 1974, 23(3/4): 233-246.
[14] SMITH M W. Microclimatic Influences on Ground Temperatures and Permafrost Distribution, Mackenzie Delta, Northwest Territories[J]. Canadian Journal of Earth Sciences, 1975, 12: 1421-1438.
[15] CHENG G D. Influences of Local Factors on Permafrost Occurrence and Their Implications for Qinghai-Tibet Railway Design[J]. Science in China Ser. D Earth Sciences, 2004, 47(5): 704-709.
[16] 马 巍, 王大雁. 冻土力学[M]. 北京: 科学出版社, 2014.
[17] 马 巍, 牛富俊, 穆彦虎. 青藏高原重大冻土工程的基础研究[J]. 地球科学进展, 2012, 27(11): 1185-1191.
[18] 程国栋,何 平. 多年冻土地区线性工程建设[J]. 冰川冻土, 2001, 23(3): 213-217.
[19] 马 巍. 青藏铁路建设中冻土区岩土工程问题[C]//中国土木工程学会第九届土力学及岩土工程学术会议论文集. 北京: 清华大学出版社, 2003:155-162.
[20] 穆彦虎, 马 巍, 牛富俊, 等. 多年冻土区公路铁路工程病害类型及特征研究[J]. 防灾减灾学报, 2014, 34(3):259-267.
[21] MU Yan-hu, MA Wei, LI Guo-yu, et al. Long-term Thermal and Settlement Characteristics of Air Convection Embankments with and without Adjacent Surface Water Ponding in Permafrost Regions[J]. Engineering Geology, 2020, 266: 105464.
[22] HJORT J, KARJALAINEN O, AALTO J, et al. Degrading Permafrost Puts Arctic Infrastructure at Risk by Mid-century[J]. Natural Communications, 2018, 9: 5147.
[23] INSTANES A, ANISIMOV O, BRIGHAM L, et al. Arctic Climate Impact Assessment: Buildings, Support Systems, and Industrial Facilities[M]. New York: Cambridge University Press, 2005: 908-944.
[24] 叶尔绍夫. 工程冻土学(冻土学原理第五卷)[M]. 张长庆,译. 莫斯科:莫斯科国立大学出版社,1999.
[25] WU Qing-bai, NIU Fu-jun. Permafrost Changes and Engineering Stability in Qinghai-Xizang Plateau[J]. Chinese Science Bulletin, 2013, 58 (10):1079-1094.
[26] 吴青柏,刘永智,施 斌,等. 青藏公路多年冻土区冻土工程研究新进展[J]. 工程地质学报,2002,10(1):55-61.
[27] 马 巍,余邵水,吴青柏,等. 青藏高原多年冻土区冷却路基技术现场实效监测研究[J]. 岩石力学与工程学报,2006,25(3):563-571.
[28] 穆彦虎,马 巍,孙志忠,等. 青藏铁路块石路基冷却降温效果对比分析[J]. 岩土力学,31(增刊1):284-292.
[29] 吴青柏,周幼吾,童长江. 冻土调查与测绘[M]. 北京: 科学出版社, 2018.
[30] 俞祁浩,程国栋. 物探技术在我国多年冻土勘测中的应用[J]. 冰川冻土, 2002, 24(1): 102-108.
[31] 贠正利, 黄小年. 综合物探方法在青藏工程走廊多年冻土辨识中的应用[J]. 工程勘察, 2019, 11:71-78.
[32] 梁林林,江利明,周志伟,等. 无人机遥感影像面向对象分类的冻土热融滑塌边界提取[J]. 国土资源遥感,2019, 31(2):180-186.
[33] LUO Li-hui, MA Wei, ZHANG Zhong-qiong, et al. Freeze/Thaw-Induced Deformation Monitoring and Assessment of the Slope in Permafrost Based on Terrestrial Laser Scanner and GNSS[J]. Remote Sensing, doi:10.3390/rs9030198.
[34] LIU Lin, ZHANG Ting-jun, WAHR J. InSAR Measurements of Surface Deformation over Permafrost on the North Slope of Alaska[J]. Journal of Geophysical Research,2010,115,F03023,doi:10.1029/2009JF001547.
[35] 陈 强,温得平,文熊飞,等. 青海可可西里盐湖水文监测方案初步构想[J]. 人民黄河, 2019, 41(11): 7-10.
[36] 谭德宝,吴佳琪,文雄飞. 可可西里湖泊群立体监测技术方法及应用[J]. 人民长江, 2020, 51(1): 243-248.
[37] 吴青柏,刘永智,于 辉. 青藏铁路普通路基下部冻土变化分析[J]. 冰川冻土,2007,29(6):960-968.
[38] MA Wei, MU Yan-hu, WU Qing-bai, et al. Characteristics and Mechanisms of Embankment Deformation along the Qinghai-Tibet Railway in Permafrost Regions[J]. Cold Regions Science and Technology,2011,67:178-186.
[39] WEN Zhi, ZHANG Ting-jun, SHEN Yu, et al. Managing Ice-rich Permafrost Exposed during Cutting Excavation along Qinghai-Tibetan Railway: Experiences and Implementation[J]. Engineering Geology,2011,122:316-327.
[40] DE GRANDPR I, FORTIER D, STEPHANI E. Degradation of Permafrost Beneath a Road Embankment Enhanced by Advected in Groundwater[J]. Canadian Journal of Earth Science, 2012, 49:953-962.
[41] MU Yan-hu, MA Wei, LI Guo-yu, et al. Impacts of Supra-permafrost Water Ponding and Drainage on a Railway Embankment in Continuous Permafrost Zone, the Interior of the Qinghai-Tibet Plateau[J]. Cold Regions Science and Technology, 2018, 154:23-31.
[42] 赵 林,盛 煜. 多年冻土调查手册[M]. 北京: 科学出版社, 2015.
PDF(2374 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map