The aim of this research is to mitigate emergencies in high-risk operation of water conservancy projects and to control the impact of emergency events.First of all,the diagram of evolution mechanism of emergency is obtained via analyzing the influencing factors of safety risks in high-risk operations.The cusp catastrophe model for high-risk operation emergency of water conservancy projects is then established based on the catastrophe theory with internal motivation and external incentives as control variables and construction safety dynamics as state variable. The formation process of emergency event is examined using the model, and the role of splitting factors and regular factors before and after emergencies and the trajectory of event evolution are expounded.Moreover,six safe statuses,inclusive of safe operations(two types), external hazard-hidden operations, internal hazard-hidden operations, and dangerous operations(two types),are summarized;corresponding preventive measures, control measures,and emergency measures are put forward.The research results suggest that enhancing the quality of workers is a key factor in avoiding emergencies, and the behavior of managers is extremely influential before and after the events. The present model is a further theoretical attempt for the safety guarantee of high-risk operations in hydraulic engineering.
Key words
hydro-project /
high-risk operation /
emergencies /
evolution mechanism /
cusp catastrophe model /
management and control measures
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 白泽华.一种水电工程高危作业安全评价实证方法的研究[D].武汉:华中科技大学, 2014.
[2] 徐 璐.高危作业施工危险因素分析与评价[D].武汉:华中科技大学, 2014.
[3] 孙开畅,李 权,徐小峰,等.施工高危作业人因风险分析动态贝叶斯网络的应用[J].水力发电学报, 2017, 36(5):28-35.
[4] 江 新,袁 轩,陈乔峰,等.水电工程高危作业安全管理风险评价[J].人民长江, 2017, 48(23):69-73.
[5] BOULTBEE N. Upper Lillooet River Hydroelectric Project: The Challenges of Constructing a Power Tunnel for Run-of-river Hydro Projects in Mountainous British Columbia[J]. Engineering, 2018, 4(2):260-266.
[6] THOM R. Structural Stability and Morphogenesis[M]. Boca Raton: CRC Press, 1989.
[7] 凌复华.突变理论及其应用[M]. 上海:上海交通大学出版社, 1987:123-125.
[8] 李常茂,薛晓辉,刘盛辉.基于尖点突变理论及Spearman秩次检验的基坑稳定性分析[J].raybet体育在线
院报,2018,35(9):98-102,108.
[9] 陈伟珂,武晓燕.基于突变理论的建筑工人不安全行为研究[J].安全与环境学报, 2017, 17(5):1838-1843.
[10]姜凤珍,胡 斌.员工-组织对抗行为演化的突变与控制[J].软科学, 2018, 32(8):134-139.
[11]ZEEMAN E C. Catastrophe Theory[J]. Scientific American, 1976, 4(234):65-83.
[12]PREYSSL C. Safety Risk Assessment and Management—The ESA Approach[J]. Reliability Engineering and System Safety, 1995, 49(3): 303-309.
[13]YIU K T W, CHEUNG S O. A Catastrophe Model of Construction Conflict Behavior[J]. Building and Environment, 2006, 41(4): 438-447.
[14]吴鹏飞,孙开畅,田 斌.基于结构方程的水利水电工程施工安全分析研究[J].raybet体育在线
院报,2014,31(4):93-96.
[15]郑霞忠,望运龙,陈 述,等.水电工程高危作业风险影响因素的SEM模型[J].中国安全生产科学技术, 2014, 10(8):119-124.
[16]孙开畅,徐小峰,张 耀,等.水利工程施工安全人为因素重要度分析[J].人民长江,2016,47(9):80-83,114.
[17]亓菁晶,陈 安.突发事件与应急管理的机理体系[J].中国科学院院刊, 2009, 24(5):496-503.