Depositing Range of Granular Columns with Different Particle Gradations

HUANG Bo-lin, ZHANG Quan, WANG Jian, LUO Chao-lin, CHEN Xiao-ting

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (10) : 89-95.

PDF(5341 KB)
PDF(5341 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (10) : 89-95. DOI: 10.11988/ckyyb.201907635
ROCK-SOIL ENGINEERING

Depositing Range of Granular Columns with Different Particle Gradations

  • HUANG Bo-lin1,2, ZHANG Quan1,2, WANG Jian1,2, LUO Chao-lin3, CHEN Xiao-ting1,2
Author information +
History +

Abstract

Featured with long stroke and wide range, debris flow cannot be effectively predicted and prevented. Grain size distribution is an important factor affecting the movement distance of debris flow. Physical model tests are carried out to study the collapse movement of granular columns with single free face varying with different particle gradations. After the collapse of granular column, particles move obliquely towards the outside of the box. The particle motion on horizontal plate is radial, and the depositing plane is in the form of a circle. The deposit profile of particles can be well fitted by parabola and circle equations. Given the same particle type, as the granular column becomes higher, the position of the center of the circle in which particles deposit after collapse moves forward along the y-axis. When the height of granular column is fixed, fine particles move farther than large particles. The range of loosely deposited area of small particles is correspondingly small, and the small particles affect only the densely deposited area;large particles affect not only the densely deposited area,but also the loosely deposited area.

Key words

granular column / collapse model experiment / velocity field / deposited range / shape of circle / grain size distribution

Cite this article

Download Citations
HUANG Bo-lin, ZHANG Quan, WANG Jian, LUO Chao-lin, CHEN Xiao-ting. Depositing Range of Granular Columns with Different Particle Gradations[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(10): 89-95 https://doi.org/10.11988/ckyyb.201907635

References

[1] 贺可强,安振远.崩滑碎屑流的形成条件与形成类型[J].河北地质学院学报,1996(增刊1):344-351.
[2] NGUYEN C T, BUI H H, FUKAGAWA R. Failure Mechanism of True 2D Granular Flows[J]. Journal of Chemical Engineering of Japan, 2015, 48(6): 395-402.
[3] 樊晓一, 田述军, 段晓冬, 等. 地形因子对坡脚型地震滑坡运动参数的影响研究[J]. 岩石力学与工程学报, 2014, 33(增刊2):4056-4066.
[4] PHILLIPS J C, HOGG A J, KERSWELL R R, et al. Enhanced Mobility of Granular Mixtures of Fine and Coarse Particles[J]. Earth and Planetary Science Letters, 2006, 246(3/4): 466-480.
[5] LINARES-GUERRERO E, GOUJON C, ZENIT R. Increased Mobility of Bidisperse Granular Avalanches[J]. Journal of Fluid Mechanics, 2007, 593: 475-504.
[6] MARKS B, ROGNON P, EINAV I. Grainsize Dynamics of Polydisperse Granular Segregation Down Inclined Planes[J]. Journal of Fluid Mechanics, 2012, 690: 499-511.
[7] 李天话, 樊晓一, 姜元俊. 不同颗粒级配滑坡碎屑流等效冲击力及作用位置分布研究[J]. 山地学报, 2018, 36(5):82-91.
[8] PASTOR M. MERODO J A F, HERREROS M I, et al. Mathematical, Constitutive Modelling of Catastrophic Landslides and Related Phenomenal[J].Rock Mechanics and Rock Engineering, 2008, 41(1): 85-132.
[9] FRANCI A, ZHANG X. 3D Numerical Simulation of Free-surface Bingham Fluids Interacting with Structures Using the PFEM[J]. Journal of Non-Newtonian Fluid Mechanics, 2018, 259: 1-15.
[10]MAST C M, MACKENZIE-HELNWEIN P, ARDUINO P, et al. Mitigating Kinematic Locking in the Material Point Method[J]. Journal of Computational Physics, 2012, 231(16): 5351-5373.
[11]SZEWC K. Smoothed Particle Hydrodynamics Modeling of Granular Column Collapse[J]. Granular Matter, 2017, 19(1), doi: 10.1007/s10035-016-0684-3.
[12]张成功,尹振宇,吴则祥,等.颗粒形状对粒状材料圆柱塌落影响的三维离散元模拟[J].岩土力学,2019,40(3):1197-1203.
[13]LUBE G, HUPPERT H, SPARKS S, et al. Collapses of Two-dimensional Granular Columns[J]. Physical Review E, doi: 10.1103/PhysRevE.72.041301.
[14]LAJEUNESSE E, MONNIER J B, HOMSY G M. Granular Slumping on a Horizontal Surface[J]. Physics of Fluids, 2005, 17(10), doi: 10.1063/1.2087687.
[15]黄波林,张 全,王 健,等. 层状颗粒柱体崩塌-堆积过程研究[J].水利水电技术,2019,50(11):110-117.
[16]HSÜ K J. Catastrophic Debris Streams (Sturzstroms) Generated by Rockfalls[J]. Bulletin of the Seismological Society of America, 1975, 86(1): 129-140.
[17]IVERSON R M. The Physics of Debris Flows[J]. Reviews of Geophysics, 1997, 35(3): 245-296.
[18]IVERSON R M. Granular Avalanches across Irregular Three-dimensional Terrain: 2. Experimental Tests[J]. Journal of Geophysical Research, 2004, 109(F1):F01015.
[19]王玉峰, 许 强, 程谦恭, 等. 复杂三维地形条件下滑坡-碎屑流运动与堆积特征物理模拟实验研究[J]. 岩石力学与工程学报, 2016, 35(9):1776-1791.
[20]贺 凯,殷跃平,冯 振,等.重庆南川甑子岩-二垭岩危岩带特征及其稳定性分析[J].中国地质灾害与防治学报,2015,26(1):16-22.
[21]何 潇. 长江巫峡望霞危岩形成机制与危险性评价[D].重庆:重庆交通大学,2015.
[22]段 俐,康 琦,申 功. PIV技术的粒子图像处理方法[J].北京航空航天大学学报,2000(1):79-82.
[23]付在国,赵飞宇,张 莉,等.PIV与PLIF同步测量方法在湍流扩散研究中的应用[J].上海电力学院学报,2019,35(1):90-95.
[24]王 品,徐则民.头寨大型高速远程滑坡碎屑流堆积体的粒度组成[J].山地学报,2013,31(6):745-752.
[25]赵晓彦,胡厚田,齐明柱.云南头寨沟大型岩质高速滑坡碰撞模型试验[J].自然灾害学报,2003(3):99-103.
[26]许启铿,金立兵,王录民,等.粮食力学参数的试验研究[J].河南工业大学学报, 2010, 31 (1):18-21.
[27]蒋红英,鲁进步,慕青松. 颗粒材料结构自组织沉降细观研究[J]. 桂林理工大学学报, 2010, 30(4):556-560.
[28]孙开畅,刘林锋,明华军,等.不同粒径及级配对碎石料休止角影响的试验研究[J].raybet体育在线 院报,2016,33(8):91-95.
PDF(5341 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map