Laboratory Study on Pore Water Pressure During Static Indentationof Pile in Silty Clay

LIU Xue-ying, WANG Yong-hong, ZHANG Ming-yi, SUN Shao-xia, SANG Song-kui, MIAO De-zi

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (8) : 106-112.

PDF(5023 KB)
PDF(5023 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (8) : 106-112. DOI: 10.11988/ckyyb.20190345
ROCK-SOIL ENGINEERING

Laboratory Study on Pore Water Pressure During Static Indentationof Pile in Silty Clay

  • LIU Xue-ying1, WANG Yong-hong1,2, ZHANG Ming-yi1,2, SUN Shao-xia1, SANG Song-kui1, MIAO De-zi1
Author information +
History +

Abstract

Jacked pipe has been widely used in practical engineering. The excess pore water pressure at the pile-soil interface has a great influence on the performance of jacked pile. Most current researches focus on the distribution of excess pore water pressure in the soil around the pile rather than the real situation of stress at the pile-soil interface. In this paper, by drilling holes in pile body and embedding silicone piezo-resistance pore water pressure sensor, static pile pressure test was conducted on two groups of model piles in clayey soil. The variations of pore water pressure and excess pore water pressure at the pile-soil interface were investigated. The pore water pressure generated at the pile-soil interface during pile jacking has been successfully monitored for the first time by the silica-piezo-resistance sensor. The pore water pressure and excess pore water pressure of pile-soil interface both increased with the growth of pile jacking depth. In the meantime, the excess pore water pressure generated in the process of pile jacking was relatively large, up to 4.21 kPa, which was about 75% of the effective overburden soil weight. In practical engineering, the relatively large excess pore water pressure generated in the process of pile jacking should be paid attention to. The excess pore water pressure at the same depth dissipated, and such dissipation attenuated with the increase of depth. In practical engineering, effective measures should be taken to prevent from excessive excess pore water pressure. The test results offer reference for static pressure pile construction and theoretical research on pile-soil interface.

Key words

jacked pile / pile-soil interface / pore water pressure / excess pore water pressure / silicon piezo-resistive pore water pressure sensor

Cite this article

Download Citations
LIU Xue-ying, WANG Yong-hong, ZHANG Ming-yi, SUN Shao-xia, SANG Song-kui, MIAO De-zi. Laboratory Study on Pore Water Pressure During Static Indentationof Pile in Silty Clay[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(8): 106-112 https://doi.org/10.11988/ckyyb.20190345

References

[1] 张明义. 层状地基上静力压入桩的沉桩过程及承载力的试验研究[D]. 重庆: 重庆大学, 2001.
[2] MURTHY D S, ROBINSON R G, RAJAGOPALK. Formation of Soil Plug in Open-ended Pipe Piles in Sandy Soils[J]. International Journal of Geotechnical Engineering, 2018: 1-11. Doi: 10.1080/19386362.2018.1465742.
[3] CHOPRA M B, DARGUSH G F. Finite-element Analysis of Time-dependent Large-deformation Problems[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1992, 16(2): 101-130.
[4] VESIC A S.Expansion of Cavities in Infinite Soil Mass[J]. Journal of the Soil Mechanics and Foundations Division, 1972, 98(3): 265-290.
[5] 唐世栋,何连生,傅 纵.软土地基中单桩施工引起的超孔隙水压力[J].岩土力学,2002,23(6):725-732.
[6] 张忠苗, 谢志专, 刘俊伟, 等. 粉土与淤质互层土中管桩压入过程孔隙水压力试验研究[J]. 岩土工程学报, 2010, 32(增刊2): 533-536.
[7] 张忠苗, 谢志专, 刘俊伟, 等. 淤质与粉质互层土中管桩沉桩过程的土压力[J]. 浙江大学学报(工学版), 2011, 45(8): 1430-1434.
[8] AZZOUZ A S, MORRISON M J. Field Measurements on Model Pile in Two Clay Deposits[J]. Journal of Geotechnical Engineering, 1988, 114(1): 104-121.
[9] 李镜培, 张凌翔, 李 林. 饱和黏土中静压桩桩周土体强度时效性分析[J]. 哈尔滨工业大学学报, 2016, 48(12): 89-94.
[10]李镜培, 李 林, 孙德安, 等. 基于CPTU测试的K0固结黏土中静压桩时变承载力研究[J]. 岩土工程学报, 2017, 39(2): 193-200.
[11]高子坤, 施建勇. 饱和黏土中沉桩挤土形成超静孔压分布理论解答研究[J]. 岩土工程学报, 2013, 35(6): 1109-1114.
[12]王 伟, 宰金珉, 王旭东. 沉桩引起的三维超静孔隙水压力计算及其应用[J]. 岩土力学, 2004, 25(5): 774-777.
[13]张建新, 赵建军, 孙世光. 群桩沉桩引起的超孔隙水压力的室内模型及试验分析[J]. 工业建筑, 2009, 39(1): 76-78.
[14]朱向荣, 何耀辉, 徐崇峰, 等. 饱和软土单桩沉桩超孔隙水压力分析[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5740-5744.
[15]李 钰, 蔡超君. 静压沉桩及锤击沉桩对饱和砂土中超孔隙水压力的影响[J]. 科学技术与工程, 2015, 15(35): 228-232.
[16]张亚国, 李镜培. 静压沉桩引起的土体应力与孔压分布特征[J]. 上海交通大学学报, 2018, 52(12): 1587-1593.
[17]王永洪, 张明义, 张春巍, 等. 静压桩贯入试验硅压阻式传感器的研制及应用[J]. 压电与声光, 2017(6): 52-56.
[18]李雨浓, LEHANE B M , 刘清秉. 黏土中静压沉桩离心模型[J]. 工程科学学报, 2018, 40(3): 285-292.
[19]GB/T 50123—1999,土工试验方法标准[S]. 北京: 中国计划出版社, 1999.
[20]JGJ 94—2008,建筑桩基技术规范[S]. 北京: 中国建筑工业出版社, 2008.
[21]OVESEN N K. The Scaling Law Relationship — Panel Discussion[C]∥Proceedings of the 7th European Conference on Soil Mechanics and Foundation Engineering. Brighton, UK. 1979: 319-323.
[22]徐光明, 章为民. 离心模型中的粒径效应和边界效应研究[J]. 岩土工程学报, 1996, 18(3): 80-86.
[23]王 伟. 打桩引起的超静孔隙水压力预测及其应用[D]. 南京: 南京工业大学, 2002.
[24]姚笑清, 胡中雄. 饱和软粘土中沉桩引起的孔隙水压力估算[J]. 岩土力学, 1997, 18(6): 31-35.
[25]PESTANA J M, HUNT C E, BRAY J D. Soil Deformation and Excess Pore Pressure Field around a Closed-ended Pile[J]. Geotechnical and Geoenvironmental Engineering, 2002, 128(1): 1-12.
[26]吴旭东. 静压管桩施工过程监测与减小超孔隙水压力的工程实例[J]. 常州工学院学报, 2008, 21(增刊1): 171-173.
PDF(5023 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map