Evolution and Dynamic Simulation of Landscape Pattern in the South Part of Poyang Lake Wetland

QIN Yu-li, YAN Qi-sheng, CAI Jian-hui

Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (6) : 171-178.

PDF(7653 KB)
PDF(7653 KB)
Journal of Changjiang River Scientific Research Institute ›› 2020, Vol. 37 ›› Issue (6) : 171-178. DOI: 10.11988/ckyyb.20190252
INFORMATION TECHNOLOGY APPLICATION

Evolution and Dynamic Simulation of Landscape Pattern in the South Part of Poyang Lake Wetland

  • QIN Yu-li1, YAN Qi-sheng2, CAI Jian-hui1
Author information +
History +

Abstract

The Multi-criteria Evaluation (MCE)-Cellular Automata Markov Chain (CA-Markov) model was adopted to simulate the changes of landscape pattern in the south part of Poyang Lake wetland from 2000 to 2015 derived from four Landsat satellite images. The accuracy of MCE-CA-Markov simulation was tested against multi-temporal remote sensing images and the landscape patterns for 2025 were forecasted in consideration of constraint factors. Research results show that :1) Arable land area decreased continuously from 2000 to 2015, but unused land decreased more dramatically. On the contrary, construction land, forest and grassland showed an increasing trend, and water area was relatively stable. Landscape elements increased while landscape connectivity became weak and landscape fragmentation increased. 2) The dynamic changes of Poyang Lake wetland were affected by natural and human factors, among which socio-economic development and urbanization played a leading role. 3) The simulated landscape patterns for 2010 and 2015 were roughly consistent with the interpreted landscape patterns. The simulation accuracies were high with the Kappa coefficients being 0.927 1 and 0.863 2, respectively for 2010 and 2015. 4) The results of simulated landscape pattern in 2025 showed that the areas of cultivated land and unused land would decrease continually, whereas the areas of construction land and forest and grassland would increase, and the water area would witness no obvious change. In addition, the changes of landscape pattern in the study area were relatively active; but as we would face more ecological environment pressure, measures to protect arable land and utilize rationally unused land need to be implemented.

Key words

Poyang Lake wetland / Landscape Pattern Index / MCE-CA-Markov model / dynamic simulation / Kappa coefficient

Cite this article

Download Citations
QIN Yu-li, YAN Qi-sheng, CAI Jian-hui. Evolution and Dynamic Simulation of Landscape Pattern in the South Part of Poyang Lake Wetland[J]. Journal of Changjiang River Scientific Research Institute. 2020, 37(6): 171-178 https://doi.org/10.11988/ckyyb.20190252

References

[1] LI S N, WANG G X, DENG W, et al. Influence of Hydrology Process on Wetland Landscape Pattern: A Case Study in the Yellow River Delta[J]. Ecological Engineering, 2009, 35(12): 1719-1726.
[2] 徐延达,傅伯杰,吕一河.基于模型的景观格局与生态过程研究[J].生态学报,2010,30(1):212-220.
[3] 傅伯杰,陈利顶,马克明,等.景观生态学原理及应用[M].北京:科学出版社,2011.
[4] FORMAN R T T. Land Mosaics: The Ecology of Landscape and Regions(1995)[M]. Washington, D. C.: Island Press, 2014.
[5] 欧定华,夏建国. 城市近郊区景观格局变化特征、潜力与模拟:以成都市龙泉驿区为例[J]. 地理研究,2016,35(3):534-550.
[6] BOUMANS R M J, SKLAR F H. A Polygon-based Spatial (PBS)Model for Simulating Landscape Change[J]. Landscape Ecology, 1990, 4(2): 83-97.
[7] SCHLEUNER C. GIS-based Estimation of Wetland Conservation Potentials in Europe[J]. Applied Ecology and Environmental Research, 2012, 10(4): 385-403.
[8] WERNER B A,JOHNSON W C,GUNTENSPERGEN G R. Evidence for 20th Century Climate Warming and Wetland Drying in the North American Prairie Pothole Region[J]. Ecology and Evolution,2013,3(10):3471-3482.
[9] 赵丹丹,贺红士,杜海波,等. 湿地景观模拟模型的研究与应用[J]. 湿地科学,2017,15(4):562-570.
[10]马士彬,张勇荣,安裕伦,等.喀斯特石漠化景观空间分布特征分析:以贵州六枝特区为例[J].raybet体育在线 院报,2015,32(12):30-35.
[11]范 强,杨 俊,吴 楠,等. 海岸旅游小镇景观格局演变与动态模拟:以大连市金石滩国家旅游度假区为例[J]. 地理科学,2013,33(12):1467-1475.
[12]张勇荣,周忠发,马士彬,等.基于Markov的石漠化景观演变特征分析与预测[J].raybet体育在线 院报,2015,32(1):52-56,69.
[13]郑青华,罗格平,朱 磊,等. 基于CA_Markov模型的伊犁河三角洲景观格局预测[J]. 应用生态学报,2010,21(4):873-882.
[14]秦钰莉,文 力,魏鹏飞,等.丹江口水库库周景观格局动态变化分析[J].人民黄河,2019,41(4):69-73.
[15]张晓娟,周启刚,王兆林,等. 基于MCE-CA-Markov的三峡库区土地利用演变模拟及预测[J]. 农业工程学报,2017,33(19):268-277.
[16]汤 洁,汪雪格,李昭阳,等. 基于CA-Markov模型的吉林省西部土地利用景观格局变化趋势预测[J]. 吉林大学学报(地球科学版),2010,40(2):405-411.
[17]张 健,何祺胜,崔 同,等.基于遥感和GIS的江苏滨海地区湿地信息提取及动态变化分析[J].raybet体育在线 院报,2017,34(4):144-150.
[18]任斐鹏,张平仓,陈小平,等.金沙江干流植被空间异质性及其对生态恢复的影响分析[J].raybet体育在线 院报,2016,33(1):24-30.
[19]何 丹,金凤君,周 璟. 基于Logistic-CA-Markov的土地利用景观格局变化:以京津冀都市圈为例[J]. 地理科学,2011,31(8):903-910.
[20]崔敬涛. 基于Logistic-CA-Markov模型的临沂市土地利用变化模拟预测研究[D].南京:南京大学,2014.
[21]胡碧松,张涵玥. 基于CA-Markov模型的鄱阳湖区土地利用变化模拟研究[J]. 长江流域资源与环境,2018,27(6):1207-1219.
[22]张 茜. 基于CA-Markov模型的杭州湾南岸湿地景观格局动态模拟与预测[D].杭州:浙江大学,2013.
[23]田 苗,王鹏新,严泰来,等. Kappa系数的修正及在干旱预测精度及一致性评价中的应用[J]. 农业工程学报,2012,28(24):1-7.
[24]王 慧,丁忠义,侯湖平,等.高潜水位煤矿区土地利用景观格局分析与模拟预测研究:以沛北煤矿区为例[J].长江流域资源与环境,2018,27(3):574-582.
PDF(7653 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map