Cyclic loading and unloading tests were performed on concrete specimens under different lateral stresses (0, 0.1fc, 0.3fc, 0.5fc) and strain rates (10-5/s, 10-4/s, 10-3/s, 10-2/s), respectively, to investigate the energy evolution of concrete in failure process. The evolution and distribution of total energy input, accumulated elastic energy, and dissipated energy along with strain growth under uniaxial compression were obtained. Experimental results showed that when strain rate was 10-5/s and 10-4/s, the total energy, elastic energy and dissipated energy of concrete increased at first but then decreased with the rising of strain in the whole loading stage; while when strain rate was at 10-3/s, 10-2/s, the aforementioned values augmented with the rising of strain. Under the same lateral stress, the accumulated energy of concrete at failure and the energy storage of concrete increased along with the rising of strain rate; when concrete reached the limit of energy storage, the elastic energy density accounts for 30% at the minimum and 58% at the maximum. When strain rate is constant, the energy storage limit of concrete expanded with the climbing of lateral stress. Lateral stress restrained the development of cracks. When lateral stress was at (0.1, 0.3)fc, the elastic energy density of concrete increased linearly with the climbing of lateral stress.
Key words
concrete /
energy evolution /
strain rate /
elastic energy /
dissipation energy
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 巫绪涛,胡 俊,谢思发. EPS混凝土的动态劈裂强度和能量耗散[J]. 爆炸与冲击,2013,33(4):369-374.
[2] 柳 琪,彭 刚,徐童淋,等. 冻融劣化混凝土循环加卸载外包络线及能量演化[J]. 水利水运工程学报,2017(6): 85-91.
[3] 施劲松,许金余,任韦波,等. 高温后混凝土冲击破碎能耗及分形特征研究[J]. 兵工学报,2014, 35(5): 703-710.
[4] 田 威,谢永利,党发宁. 冻融环境下混凝土力学性能试验及损伤演化[J]. 四川大学学报(工程科学版),2015, 47(4): 38-44.
[5] 张志镇,高 峰. 3种岩石能量演化特征的试验研究[J]. 中国矿业大学学报, 2015, 44(3): 416-422.
[6] ZHANG Z Z, GAO F. Experimental Investigation on the Energy Evolution of Dry and Water-saturated Red Sandstones[J]. International Journal of Mining Science and Technology, 2015, 25(3): 383-388.
[7] 张志镇,高 峰.单轴压缩下红砂岩能量演化试验研究[J].岩石力学与工程学报,2012,31(5):953-962.
[8] 张志镇,高 峰. 受载岩石能量演化的围压效应研究[J]. 岩石力学与工程学报,2015, 34(1): 1-11.
[9] 李子运,吴 光,黄天柱,等. 三轴循环荷载作用下页岩能量演化规律及强度失效判据研究[J]. 岩石力学与工程学报,2018, 37(3): 662-670.
[10]宫凤强,罗 松,李夕兵,等. 红砂岩张拉破坏过程中的线性储能和耗能规律[J]. 岩石力学与工程学报,2018, 37(2): 352-363.
[11]牛超颖,贾洪彪,马淑芝,等. 基于能量原理与中间主应力效应的新岩石强度准则探讨[J]. raybet体育在线
院报,2015, 32(11): 93-98.
[12]BAGDE M N, PETROš V. Fatigue and Dynamic Energy Behaviour of Rock Subjected to Cyclical Loading[J]. International Journal of Rock Mechanics & Mining Sciences, 2009, 46(1): 200-209.
[13]ZHANG Z X, KOU S Q, JIANG L G, et al. Effects of Loading Rate on Rock Fracture: Fracture Characteristics and Energy Partitioning[J]. International Journal of Rock Mechanics & Mining Sciences,2000, 37(5): 745-762.
[14]LIU X S, NING J G, TAN Y L, et al. Damage Constitutive Model Based on Energy Dissipation for Intact Rock Subjected to Cyclic Loading[J]. International Journal of Rock Mechanics and Mining Sciences,2016, 85: 27-32.
[15]谢和平,鞠 杨,黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报,2005,24(17): 3003-3010.
[16]JGJ 55—2011,普通混凝土配合比设计规程[S].北京:中国建筑工业出版社,2011.