To investigate the unsaturated wetting deformation of loess, staged water-saturation test is conducted on loess specimens of different compactness degrees. The critical void ratio for the wetting deformation of compacted loess is proposed by comparing the deformation behaviors of loess among different stages from unsaturated to saturated state. In addition, scanning electron microscope (SEM) and mercury intrusion porosimetry (MIP) are adopted to analyze the correlation between wetting deformation behavior and microstructure evolution. Results are concluded as follows: 1) under a constant vertical pressure, the void ratio of loess specimen decreases exponentially with the rising of saturation degree and finally reduces to the critical void ratio when its corresponding initial void ratio is greater than critical void ratio; while when initial void ratio is lower than critical void ratio, void ratio exhibits no change. 2) When the compactness degree is 70%, strong wetting deformation is resulted from large amounts of inner pores with sizes larger than most particle sizes, while loess with a compactness of 90% presents an opposite trend. 3) Under loading and wetting actions, the pore structure of loess with a compactness of 70% varies significantly, with particles getting rounded and particles’ predominant orientation reinforced; while for loess with a compactness of 90%, the pore structure changes slightly with no obvious change in particles’ predominant orientation, and particles tend to be angular due to the weak cementation among particles.
Key words
compacted loess /
unsaturated /
wetting deformation /
critical void ratio /
microstructure
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 刘东生. 中国的黄土堆积. 北京: 科学出版社,1965.
[2] ZHANG Zong-hu. Loess in China. GeoJournal, 1980, 4(6): 525-540.
[3] ZHANG Li-min, YU Xue-ming, HU Ting. Optimization of Compaction Zoning in Loess Embankments. Canadian Geotechnical Journal, 1998, 35(4): 611-621.
[4] 黄雪峰, 孔 洋, 李旭东,等. 压实黄土变形特性研究与应用. 岩土力学, 2014, 35(增2): 37-44.
[5] 张茂花, 谢永利, 刘保健. 增 (减) 湿时黄土的湿陷系数曲线特征. 岩土力学, 2005, 26(9): 1363-1368.
[6] 高 帅, 骆亚生, 胡海军, 等. 非饱和原状黄土增湿条件下力学特性试验研究. 岩土工程学报, 2015, 37(7): 1313-1318.
[7] 谢定义. 黄土力学特性与应用研究的过去、现在与未来. 地下空间, 1999, 19(4): 273-286.
[8] 张登飞, 陈存礼, 杨 炯,等. 侧限条件下增湿时湿陷性黄土的变形及持水特性. 岩石力学与工程学报, 2016, 35(3): 604-612.
[9] 罗爱忠, 邵生俊, 陈昌禄,等. 基于综合结构势的结构性黄土双硬化参数模型. raybet体育在线
院报, 2013, 30(9): 59-63.
[10] HOUSTON S L, HOUSTON W N, SPADOLA D J. Prediction of Field Collapse of Soils due to Wetting. Journal of Geotechnical Engineering, 1988, 114 (1): 40-58.
[11] ROGERS C D F, DIJKSTRA T A, SMALLEY I J. Hydro-consolidation and Subsidence of Loess: Studies from China, Russia, North America and Europe. Engineering Geology, 1994, 37(2): 83-113.
[12] 高国瑞. 中国黄土的微结构. 中国科学(A辑), 1980, (12): 1203-1208.
[13] 雷祥义. 中国黄土的孔隙类型与湿陷性. 中国科学(B辑), 1987, (12): 48-54.
[14] LIN Z, LIANG W. Engineering Properties and Zoning of Loess and Loess-like Soils in China. Canadian Geotechnical Journal, 1982,19(1):76-91.
[15] 王常明, 林 容, 陈多才,等. 辽西黄土湿陷变形特性及湿陷后微观结构变化. 吉林大学学报(地球科学版), 2011, 41(2): 471-477.
[16] 方祥位, 申春妮, 李春海, 等. 陕西蒲城黄土微观结构特征及定量分析. 岩石力学与工程学报, 2013, 32(9): 1917-1925.
[17] GB/T 50123—1999, 土工试验方法标准. 北京: 中国计划出版社, 1999: 132.
[18] JIANG M, ZHANG F, HU H, et al. Structural Characterization of Natural Loess and Remolded Loess under Triaxial Tests. Engineering Geology, 2014, 181: 249-260.
[19] 沙爱民,陈开圣. 压实黄土的湿陷性与微观结构的关系. 长安大学学报(自然科学版), 2006, 26(4): 1-4.
[20] 吴义祥.工程粘性土微观结构的定量评价.中国地质科学院学报,1991,12(2):143-151.