Simulation of the Whole Process of Slope Failure Based onGravity Increase Method

LIU Chen-ling, CHANG Xiao-lin, TANG Long-wen, ZHOU Wei, MA Gang

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (9) : 133-138.

PDF(3947 KB)
PDF(3947 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (9) : 133-138. DOI: 10.11988/ckyyb.20170376
ROCK-SOIL ENGINEERING

Simulation of the Whole Process of Slope Failure Based onGravity Increase Method

  • LIU Chen-ling1,2, CHANG Xiao-lin1,2, TANG Long-wen1,2, ZHOU Wei1,2, MA Gang1,2
Author information +
History +

Abstract

Traditional slope stability analysis methods could not reflect the whole process of progressive failure from crack initiation, sliding, to piling up. In view of this, a combined finite-discrete element method based on gravity increase method (FDEM-GIM) is proposed to study the slope failure of Red Rock Landslide in Yunnan Province of China. Interface elements are introduced into the surface rock mass of the slope model to build the combined finite-discrete slope model and simulate the critical failure state of slope. The safety factor and the sliding surfaces of the slope are acquired, and then are compared with those obtained by rigid body limit equilibrium method. By increasing the gravity continuously, the progressive failure process of the slope is obtained. The results demonstrate that the proposed FDEM-GIM is feasible in slope stability analysis because the safety factor, the position and shape of the most dangerous sliding face obtained by FDEM-GIM are consistent with those by rigid body limit equilibrium method. Moreover, rigid body limit equilibrium is only suitable for the critical instability state of slope as it could not predict the formation of subsequent sliding blocks, while the proposed FDEM-GIM could further simulate the whole process of slope failure.

Key words

slope stability analysis / gravity increase method / whole process of progressive failure / rigid body limit equilibrium method / combined finite-discrete element method

Cite this article

Download Citations
LIU Chen-ling, CHANG Xiao-lin, TANG Long-wen, ZHOU Wei, MA Gang. Simulation of the Whole Process of Slope Failure Based onGravity Increase Method[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(9): 133-138 https://doi.org/10.11988/ckyyb.20170376

References

[1] 李满意, 周洪燕, 魏燕珍,等. 类土质边坡失稳机理分析与稳定性研究[J]. raybet体育在线 院报, 2016, 33(5):111-115.
[2] 邱宽红,林绍忠,黄 斌.基于DDA的膨胀土边坡破坏过程模拟[J].raybet体育在线 院报,2009,26(11):58-61.
[3] BISHOP A W. The Use of the Slip Circle in Stability Analysis of Slope[J]. Geotechnique, 1955, 5(5):7-17.
[4] 袁 闻, 徐 青, 陈胜宏,等. 边坡稳定分析的三维极限平衡法及工程应用[J]. raybet体育在线 院报, 2013, 30(4):56-61.
[5] MORGENSTERN N R, PRICE V E. The Analysis of the Stability of General Slip Surfaces[J]. Geotechnique, 1965, 15(1):79-93.
[6] 陈祖煜. 土质边坡稳定分析:原理·方法·程序[M]. 北京:中国水利水电出版社, 2003.
[7] 杨明成, 郑颖人. 基于极限平衡理论的局部最小安全系数法[J]. 岩土工程学报, 2002, 24(5):600-604.
[8] 康亚明, 刘长武, 贾 延,等. 重度增加法确定边坡潜在滑动面[J]. 人民长江, 2008, 39(8):75-77.
[9] 王述红, 高红岩, 张紫杉. 基于重度增加法的岩坡破坏过程流形元分析[J]. 东北大学学报(自然科学版), 2016, 37(3):403-407.
[10]LI L C,TANG C A,ZHU W C,et al.Numerical Analysis of Slope Stability Based on the Gravity Increase Method[J]. Computers & Geotechnics, 2009, 36(36):1246-1258.
[11]UTILI S, NOVA R. DEM Analysis of Bonded Granular Geomaterials[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2008, 32(17):1997-2031.
[12]MUNJIZA A, OWEN D R J, BICANIC N. A Combined Finite-Discrete Element Method in Transient Dynamics of Fracturing Solids[J]. Engineering Computations, 1995, 12(2):145-174.
[13]MUNJIZA A.The Combined Finite-Discrete Element Method[M]. USA: Wiley, 2004.
[14]ANTOLINI F, BARLA M, GIGLI G, et al. Combined Finite-Discrete Numerical Modeling of Runout of the Torgiovannetto di Assisi Rockslide in Central Italy[J]. International Journal of Geomechanics, 2016, 16(6):1-16.
[15]ELMO D, STEAD D, EBERHARDT E, et al. Applications of Finite/Discrete Element Modeling to Rock Engineering Problems[J]. International Journal of Geomechanics, 2013, 13(5):565-580.
[16]HAVAEJ M, STEAD D, EBERHARDT E, et al. Characterization of Bi-planar and Ploughing Failure Mechanisms in Footwall Slopes Using Numerical Modelling[J]. Engineering Geology, 2014, 178(16):109-120.
[17]MAHABADI O K, LISJAK A, MUNJIZA A, et al. Y-Geo: New Combined Finite-Discrete Element Numerical Code for Geomechanical Applications[J]. International Journal of Geomechanics, 2012, 12(6):676-688.
[18]DUGDALE D. Yielding of Steel Sheets Containing Slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104.
[19]BARENBLATT G I. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture[J]. Advances in Applied Mechanics, 1962, 7: 55-129.
[20]POTYONDY D O, CUNDALL P A. A Bonded-particle Model for Rock[J]. International Journal of Rock Mechanics & Mining Sciences, 2004, 41(8):1329-1364.
[21]ZHOU W, YUAN W, MA G, et al. Combined Finite-discrete Element Method Modeling of Rockslides[J]. Engineering Computations, 2016, 33(5):1530-1559.
[22]CHANG X L, CHAO H U, WEI Z, et al. A Combined Continuous-discontinuous Approach for Failure Process of Quasi-brittle Materials[J]. Science China Technological Sciences, 2014, 57(3):550-559.
PDF(3947 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map