In an attempt to explore the most suitable curing material for the development of concrete in cold and dry environment with large temperature difference, we analyzed the compressive strength, crack resistance and microstructure of concrete cured by curing agent, rubber sheet and geotextile, respectively, and compared the properties with those under natural condition. Results revealed that in comparison with concrete cured under natural condition, (1) concrete cured with curing agent has inferior compressive strength but superior crack resistance, and in a mesoscopic sense, larger porosity and average chord length but smaller void spacing factor which are used to characterize the pore structure of concrete; (2) concrete cured with rubber sheet has better compressive strength but lower crack resistance, and in a mesoscopic sense, smaller porosity and average chord length but larger void spacing factor; (3) concrete cured with geotextile is endowed with the advantages of the abovementioned two curing methods, with enhanced crack resistance, porosity, average chord length as well as void spacing factor despite no big change in compressive strength, indicating that concrete cured with geotextile is of sound durability. In conclusion, among the four curing methods, geotextile is the most favorable for concrete development in cold and dry environment with large temperature difference.
Key words
concrete /
cold and dry environment with large temperature difference /
curing material /
compressive strength /
crack resistance /
mesostructure
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 于本田,王起才,周立霞,等. 矿物掺合料与水胶比对混凝土耐久性的影响研究[J]. 硅酸盐通报,2012,31(2):391-395,410.
[2] REL F S,UEBACHS S, BRAMESHUBER W. Investigations on the Influence of Fly Ash on the Formation and Stability of Artificially Entrained Air Voids in Concrete [J]. Materials and Structures, 2009, 42(2): 227-240.
[3] CUSSON D, HOOGEVEEN T. Internal Curing of High-Performance Concrete with Presoaked Fine Light Weight Aggregate for Prevention of Autogenous Shrinkage Cracking[J]. Cement and Concrete Research, 2008, 38(6):757-765.
[4] 谢 超,王起才,于本田,等. 不同养护条件下同等强度混凝土抗氯离子渗透性和细观结构对比分析试验研究[J]. 硅酸盐通报,2015,34(9):2496-2500.
[5] 李雪峰,付 智. 低气压环境对混凝土含气量及气泡稳定性的影响[J]. 硅酸盐学报,2015,43(8):1076-1082.
[6] 郭寅川,申爱琴,王 剑,等. 高寒地区桥梁混凝土抗氯离子渗透性能研究[J]. 建筑材料学报,2014,17(3):425-429,436.
[7] 张 丰,莫立武,邓 敏. 碳化养护对钢渣混凝土强度和体积稳定性的影响[J]. 硅酸盐学报,2016,44(5):640-646.
[8] 李美利,钱觉时,徐姗姗,等. 养护条件对混凝土表面层性能的影响[J]. 建筑材料学报,2009,12(6):724-728.
[9] 王衍森,黄家会,李金华,等. 冻结井外壁高强混凝土的早期强度增长规律研究[J]. 中国矿业大学学报,2008,37(5):595-599.
[10]包文忠,殷会玲,罗忠涛,等. 早期受冻环境下含粉煤灰水泥砂浆力学性能及作用机理研究[J]. 混凝土,2016,(2):117-120.
[11]董淑慧,冯德成,江守恒,等. 早期受冻温度对负温混凝土微观结构与强度的影响[J]. 黑龙江科技学院学报,2013,23(1):63-66.
[12]金贤玉,田 野,金南国. 混凝土早龄期性能与裂缝控制[J]. 建筑结构学报,2010,31(6):204-212.
[13]段 运,王起才,张戎令,等. 不同养护条件下低水胶比混凝土抗氯离子渗透性及孔结构试验研究[J]. 铁道科学与工程学报,2016,13(5):842-847.
[14]RYSHKEWITCH E. Compression Strength of Porous Sintered Alumina and Zirconia[J]. Journal of the American Ceramic Society, 1953, 36(2):65-68.
[15]SCHILLER K K. Strength of Porous Materials[J]. Cement & Concrete Research, 1971, 1(4):419-422.
[16]岑国平,蒋小伟,王金华,等. 道面混凝土气孔结构与抗冻性的研究[J]. 公路,2012,(11):1-4.
[17]李雪峰,付 智,罗 翥. 低气压环境对混凝土含气量及气孔结构影响研究[J]. 公路交通科技,2015,32(2):49-54.