Eleven indicators of water quality in two areas of the Caohai Lake (Yangguanshan and the middle part) in Guizhou Province were measured seasonally in 2016. Trophic state index (TLI) and Surface Water Quality Standard (GB 3838—2002) were used to evaluate the trophic status of water quality, and principal component analysis (PCA) was conducted to assess the pollution level and main influential factors. Results demonstrated that: (1) The eleven indicators in both areas displayed significant seasonal variations, among which transparency and dissolved oxygen (DO) were highest in winter; while suspended solids (SPM) was highest in autumn. Except that in autumn, pH remained at about 8. TN, TP, NH4+-N and CODMn were in 0.58-2.27, 0.032-0.072, 0.059-0.364 and 4.28-6.79 mg/L, respectively and Chl.a ranged from 5.62 to 9.95 mg/m3, with the highest TN in autumn, the highest TP in autumn and winter, and highest CODMn and Chl.a in summer and autumn. (2) The TLI of both areas were slightly higher than 50 in autumn, indicating slight pollution, while in other seasons, the TLI ranged between 30 and 50, implying medium trophic state. Evaluation results from GB 3838—2002 show that the water quality in Yangguanshan belonged to class Ⅱ and Ⅲ, except for a few occasions; whereas in the middle part, the water quality was mainly class Ⅱ and Ⅳ. TN and CODMn were major influential factors, while TP and NH4+-N were at level Ⅱ throughout the year. (3) Principle component analysis revealed that the most important influencing factors of water quality in Yangguanshan were ions, nitrogen, organic matter, DO and Chl.a, while in the middle part were Chl.a, NH4+-N, SD, EC, TP, DO, WT and SPM. In conclusion, nitrogen and organic matters are the most important influencing factors and the fundamental causes of water quality in Yangguanshan and the middle part of Caohu Lake. Controlling the inputs of external nitrogen and organic matters would be the key to improving the water quality in Caohai Lake.
Key words
water quality assessment /
Caohai Lake /
seasonal variation /
trophic state index (TLI) /
principal component analysis (PCA)
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 彭益书, 付 培, 杨瑞东. 草海湿地生态系统健康评价[J]. 地球与环境, 2014, 42(1): 68-81.
[2] 喻元秀. 草海高原湿地区域环境承载力研究[D]. 贵阳: 贵州师范大学, 2005.
[3] 王苏民, 窦鸿身. 中国湖泊志[M]. 北京: 科学出版社, 1998: 390-391.
[4] 耿 侃, 宋春青. 贵州草海自然环境保护与自然资源开发[J]. 北京师范大学学报(自然科学版), 1990,(1): 84-90.
[5] 徐 松, 高 英. 草海湖泊湿地水环境污染现状及可持续利用研究[J]. 环境科学导刊, 2009, 28(5): 33-36.
[6] 冯元璋. 草海水体的微生物污染调查[J].仲恺农业技术学院学报, 1994, 7(2): 16-20.
[7] 刘凤英. 草海湿地生态系统影响因素分析[J]. 贵州环保科技, 2005, 11(4): 34-37.
[8] 郭 媛, 林昌虎, 何腾兵, 等. 草海自然保护区生态环境问题及保护对策[J]. 贵州科学, 2011, 29(6): 26-30.
[9] 郑钧宁, 夏品华, 林 陶, 等. 贵州草海城郊混合区农田沟渠氮磷含量及分布特征[J]. 山地农业生物学报, 2013, 32(3): 224-228.
[10]欧阳勇, 林昌虎, 何腾兵, 等. 运用主成分分析法评价贵州草海水质污染[J].贵州科学, 2012, 30(1): 21-26.
[11]潘 鸿. 贵州威宁草海浮游植物种组变化及水体富营养化特征研究[D]. 贵阳: 贵州师范大学, 2005.
[12]曾得峰, 喻元秀, 寇学永. 湿地水环境质量的模糊综合评价——以贵州省草海高原湿地为例[J]. 贵州环保科技, 2006, 12(2): 21-26.
[13]于 洋, 张 民, 钱善勤, 等. 云贵高原湖泊水质现状及演变[J]. 湖泊科学, 2010, 22(6): 820-828.
[14]张珍明, 张清海, 林绍霞, 等. 贵州草海湖湿地水体污染特征及污染因子分析研究[J]. 广东农业科学, 2012, 39(20): 183-187.
[15]张家春, 林绍霞, 张清海, 等. 贵州草海底泥-上覆水中氮磷含量时空分布特征[J]. 广东农业科学, 2014, 41(9): 184-188.
[16]蔡国俊, 周 晨, 林艳红, 等. 贵州草海高原湿地浮游动物群落结构与水质评价[J]. 生态环境学报, 2016, 25(2): 279-285.
[17]周 晨, 喻理飞, 蔡国俊, 等. 草海高原湿地湖泊水质时空变化及水质分区研究[J]. 水生态学杂志, 2016, 37(1): 24-30.
[18]GB 3838—2002,地表水环境质量标准[S]. 北京:中国环境科学出版社,2002.
[19]李 为, 都 雪, 林明利, 等. 基于PCA和SOM网络的洪泽湖水质时空变化特征分析[J]. 长江流域资源与环境, 2013, 22(12): 1593-1601.
[20]金相灿, 屠清瑛. 湖泊富营养化调查规范[M]. 北京: 中国环境科学出版社, 1990: 294-295.
[21]郭 媛, 林昌虎, 何腾兵, 等. 草海表层沉积物有机碳、氮、磷分布特征及污染评价[J]. 贵州科学, 2012, 30(1): 27-32.
[22]RHEE G Y, GOTHAM I J. Optimum N: P Ratios and Coexistence of Planktonic Algae[J]. Journal of Phycology, 1980, 16(4): 486-489.
[23]REYNOLDS C S. The Ecology of Freshwater Phytoplankton[M]. London, UK: Cambridge University Press, 1984.
[24]黄 明, 洪天求. 基于主成分分析的巢湖水质影响因子研究[J]. 合肥工业大学学报(自然科学版), 2005, 28(6): 639-642.
[25]郭劲松, 李 哲, 张 呈, 等. 三峡小江回水区藻类集群与主要环境要素的典范对应分析[J]. raybet体育在线
院报, 2010, 27(10): 60-64.