Case Analysis of the Prediction Ability of SVM-based Monitoring Model for Concrete Dam Deformation

QIAN Qiu-pei, CUI Wei-jie, BAO Teng-fei, LI Hui

Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (8) : 46-50.

PDF(2171 KB)
PDF(2171 KB)
Journal of Changjiang River Scientific Research Institute ›› 2018, Vol. 35 ›› Issue (8) : 46-50. DOI: 10.11988/ckyyb.20170062
ENGINEERING SAFETY AND DISASTER PREVENTION

Case Analysis of the Prediction Ability of SVM-based Monitoring Model for Concrete Dam Deformation

  • QIAN Qiu-pei 1,2,3, CUI Wei-jie4, BAO Teng-fei 1,2,3, LI Hui 1,2,3
Author information +
History +

Abstract

Dam deformation is nonlinearly correlated with water level, temperature, aging and many other factors. Support vector machine (SVM) is of great superiority in dam safety monitoring as it accommodates small sample, nonlinear and high dimensional learning problems. In this article, the principle of SVM is expounded, the procedures of building an SVM-based deformation monitoring model are summarized, and parameter optimization method is introduced as well. The prediction ability of the SVM-based monitoring model for concrete dam deformation is analyzed through a case study. Results demonstrate that the short term prediction ability of the model is better than its long term prediction ability; the prediction ability is affected by the number of prediction sets rather than by algorithm optimization. The results indicate that selecting an appropriate number of prediction sets is important to the validity of the model.

Key words

concrete dam / deformation monitoring / Support Vector Machine / particle swarm optimization / prediction ability / case analysis

Cite this article

Download Citations
QIAN Qiu-pei, CUI Wei-jie, BAO Teng-fei, LI Hui. Case Analysis of the Prediction Ability of SVM-based Monitoring Model for Concrete Dam Deformation[J]. Journal of Changjiang River Scientific Research Institute. 2018, 35(8): 46-50 https://doi.org/10.11988/ckyyb.20170062

References

[1] 顾冲时, 苏怀智. 混凝土坝工程长效服役与风险评定研究述评[J]. 水利水电科技进展, 2015, 35(5):1-12.
[2] 顾冲时, 苏怀智, 王少伟. 高混凝土坝长期变形特性计算模型及监控方法研究进展[J]. 水力发电学报, 2016, 35(5):1-14.
[3] 杨晓晓, 刘 懿, 王 超,等. 基于改进PSO算法和SVM的大坝监控模型研究[J]. 人民长江, 2015, 46(18):97-100.
[4] 杜传阳, 郑东健. 基于SVM理论的大坝变形监测模型改进方法研究[J]. 三峡大学学报(自然科学版), 2015, 37(2):10-14.
[5] 杜传阳, 郑东健, 张 毅,等. 基于动态SVM-MC的大坝变形监测模型及应用[J]. 水电能源科学, 2015,(1):71-74.
[6] 杜传阳, 郑东健, 张 毅,等. 基于改进PSO-SVM-MC模型的大坝变形监测模型[J]. 水电能源科学, 2015,(2):74-77.
[7] 钱 程, 李连基, 周子东. SVM-RBFNN组合模型在某混凝土双曲拱坝变形监测中的应用[J]. 水电能源科学, 2015,(12):93-95.
[8] 张洪银, 童严文, 谢继香. 混沌序列GA-SVM模型在滑坡监测中的应用[J]. 人民黄河, 2014, 36(12):114-117.
[9] 李涧鸣, 包腾飞, 卢远富,等. 基于GAMPSO-SVM的大坝变形监控模型[J]. 三峡大学学报(自然科学版), 2015, 37(6):42-46.
[10]屠立峰, 王 慧, 顾 微. 基于GCS-SVM的大坝变形监测非线性预警模型[J]. 中国农村水利水电, 2015,(5):114-116.
[11]Matlab中文论坛.MATLAB神经网络30个案例分析[M]. 北京:北京航空航天大学出版社, 2010: 286.
[12]肖浩波, 谷艳昌. 混凝土坝安全监控最小二乘支持向量机模型[J]. raybet体育在线 院报, 2013, 30(5):34-37.
[13]赵 娜, 贾世魁, 王 健,等. PSO优化算法的参数研究[J]. 机械与电子, 2013,(11):3-6.
[14]范振东, 崔伟杰, 陈 敏,等. 基于IPSO-RVM的大坝安全预警模型[J]. raybet体育在线 院报, 2016, 33(2):48-51.
[15]吴中如. 水工建筑物安全监控理论及其应用[M]. 北京:高等教育出版社, 2003: 406.
PDF(2171 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map