Analyzing the dynamic changes of lakes in Tibet, the world’s climate sensitive region, in the background of global warming and economic development, is of great significance to revealing the environment evolution features. According to the lake boundary information obtained by Landsat remote sensing images from 1990 to 2015, we analyzed the dynamic changes of spatial and temporal distribution of lakes in Tibet in the past 25 years. We also investigated into the main driving factors of lake change in terms of climate factor and human factor, and further analyzed the lake change in response to climate change. Results show that in the past 25 years, the number of lakes in Tibet has increased by 261 and the area of lakes has increased from 24 161.1 km2 to 30 549.2 km2. In temporal scale, lake area experienced a severe shrinkage in 1990-1995, and then expanded rapidly in 1996-2006; in 2007-2013, the expansion alleviated. The temporal transformation can be well reflected by precipitation, temperature, and evapotranspiration. In spatial scale, the variation of lake area differs apparently: in the middle of Tibet, low temperature and evapotranspiration as well as high precipitation gave rise to the rapid expansion of lake area; whereas in north Tibet, despite high temperature, low precipitation and large amount of evapotranspiration, the melting of glaciers and frozen soil caused by high temperature could be a possible factor of lake expansion; in the Himalayas, evapotranspiration far exceeding precipitation led to lake shrinkage. In addition, although human activities contributed to the local demand for lakes and other water resources, the area of lake has expanded, indicating that climate is a main driving factor of lake change in Tibet.
Key words
lake change /
Tibet Autonomous Region /
spatial and temporal distribution /
human factors /
climate response
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 杨桂山, 马荣华, 张 路,等. 中国湖泊现状及面临的重大问题与保护策略[J] . 地理科学进展, 2010, 22(6):799-810.
[2] QIU J. China: The Third Pole[J] . Nature, 2008, 454(7203): 393-396.
[3] 万 玮, 肖鹏峰, 冯学智,等. 卫星遥感监测近30年来青藏高原湖泊变化[J] . 科学通报, 2014, 59(8):701-714.
[4] 邵兆刚, 朱大岗, 孟宪刚,等. 青藏高原近25年来主要湖泊变迁的特征[J] . 地质通报, 2007, 26(12):1633-1645.
[5] 闫立娟, 齐 文. 青藏高原湖泊遥感信息提取及湖面动态变化趋势研究[J] . 地球学报, 2012, 33(1):65-74.
[6] 林乃峰, 沈渭寿, 张 慧,等. 近35 a西藏那曲地区湖泊动态遥感与气候因素关联度分析[J] . 生态与农村环境学报, 2012, 28(3):231-237.
[7] 张继承, 姜琦刚, 李远华,等. 基于RS/GIS的西藏地区湖泊变化动态监测及气候背景[J] . 地球科学与环境学报, 2008, 30(1):87-93.
[8] 李均力, 盛永伟. 1976—2009年青藏高原内陆湖泊变化的时空格局与过程[J] . 干旱区研究, 2013, 30(4):571-581.
[9] 鲁安新, 姚檀栋, 王丽红,等. 青藏高原典型冰川和湖泊变化遥感研究[J] . 冰川冻土, 2005, 27(6):783-792.
[10] MCFEETERS S K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features[J] . International Journal of Remote Sensing, 1996, 17(7):1425-1432.
[11] 熊金国, 王世新, 周 艺. 不同指数模型提取ALOS AVNIR-2影像中水体的敏感性和精度分析[J] . 国土资源遥感, 2010, 22(4):46-50.
[12] 朱立平, 谢曼平, 吴艳红. 西藏纳木错1971~2004年湖泊面积变化及其原因的定量分析[J] . 科学通报, 2010,55(18):1789-1798.
[13] 宋晓猛, 张建云, 占车生,等. 气候变化和人类活动对水文循环影响研究进展[J] . 水利学报, 2013,44(7):779-790.
[14] 闫立娟, 郑绵平, 魏乐军. 近40年来青藏高原湖泊变迁及其对气候变化的响应[J] . 地学前缘, 2016,23(4) :310-323.
[15] 巴桑赤烈, 刘景时, 牛竟飞,等. 西藏中部巴木错湖泊面积变化及其原因分析[J] . 自然资源学报, 2012,27(2):302-310.
[16] 吴艳红, 朱立平, 叶庆华,等. 纳木错流域近30年来湖泊——冰川变化对气候的响应[J] .地理学报, 2007, 62(3):301-311.
[17] 拉 巴, 拉巴卓玛, 陈 涛. 基于MODIS影像的西藏典型内陆湖泊变化研究及成因分析[J] . 气象与环境科学, 2011, 34(3):37-40.
[18] 叶庆华, 姚檀栋, 郑红星,等. 西藏玛旁雍错流域冰川与湖泊变化及其对气候变化的响应[J] . 地理研究, 2008, 27(5):1178-1190.
[19] 董斯扬, 薛 娴, 尤全刚,等. 近40年青藏高原湖泊面积变化遥感分析[J] . 湖泊科学, 2014, 26(4):535-544.