Research Progress of Mechanical Characteristics and Constitutive Model of Rock under Unloading Condition

LI Jian-he, SHENG Qian, ZHU Ze-qi, NIU Li-min, RUAN Hang

Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (7) : 87-93.

PDF(1546 KB)
PDF(1546 KB)
Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (7) : 87-93. DOI: 10.11988/ckyyb.20160388
ROCK-SOIL ENGINEERING

Research Progress of Mechanical Characteristics and Constitutive Model of Rock under Unloading Condition

  • LI Jian-he1,2, SHENG Qian1, ZHU Ze-qi1, NIU Li-min2, RUAN Hang1
Author information +
History +

Abstract

In recent years, scholars have made plenty of researches on the mechanical characteristics and constitutive models of unloading rock through the unloading tests of rock specimen. Also, substantial achievements have been obtained. Compared with loading condition, rock performs differently in many aspects under unloading condition, such as strength characteristics, deformation regularities and failure modes. Unloading rock has significant tensile cracks and volume dilatation, and always performs as tensile-shear failure. Moreover, deformation and failure mechanism are impacted greatly by unloading speed, confining pressure and stress path. The constitutive models of unloading rock can be divided into phenomenological constitutive model and micro-mechanical constitutive model. The former does not consider the failure evolution mechanism of unloading rock, while the latter does not consider the micro crack groups and the error caused by mathematical simplification. These scientific problems make the future of unloading rock mechanics research work full of opportunities and challenges.

Key words

rock mechanics / unloading test / deformation feature / fracture characteristics / constitutive model

Cite this article

Download Citations
LI Jian-he, SHENG Qian, ZHU Ze-qi, NIU Li-min, RUAN Hang. Research Progress of Mechanical Characteristics and Constitutive Model of Rock under Unloading Condition[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(7): 87-93 https://doi.org/10.11988/ckyyb.20160388

References

[1] KAISER P K, YAZICI S, MALONEY S. Mining-induced Stress Change and Consequences of Stress Path on Excavation Stability—A Case Study [J]. International Journal of Rock Mechanics and Mining Sciences, 2001, 38(2): 167-180.
[2]CAI M. Influence of Stress Path on Tunnel Excavation Response-Numerical Tool Selection and Modeling Strategy [J]. Tunneling and Underground Space Technology, 2008, 23(6): 618-628.
[3] 哈秋舲.加载岩体力学与卸荷岩体力学[J]. 岩土工程学报, 1998,20(1): 114.
[4] 田利勇,朱珍德,朱 姝,等. 粉砂岩卸荷变形破坏特征试验研究[J]. raybet体育在线 院报, 2013, 30(4): 44-47.
[5] 李建林,王瑞红,蒋昱州,等. 砂岩三轴卸荷力学特性试验研究[J]. 岩石力学与工程学报, 2010,29(10): 2034-2041.
[6] 黄润秋, 黄 达. 卸荷条件下花岗岩力学特性试验研究[J]. 岩石力学与工程学报, 2008,27(11): 2205-2213.
[7] 黄润秋,黄 达. 卸荷条件下岩石变形特征及本构模型研究[J]. 地球科学进展, 2008,23(5): 441-447.
[8] MARTIN C D. Seventeenth Canadian Geotechnical Colloquium: The Effect of Cohesion Loss and Stress Path on Brittle Rock Strength[J]. Canadian Geotechnical Journal, 1997, 34(5): 698-725.
[9] 陶履彬,夏才初,陆益鸣. 三峡工程花岗岩卸荷全过程特性的试验研究[J]. 同济大学学报(自然科学版), 1998,26(3): 330-334.
[10]徐松林,吴 文,王广印,等. 大理岩等围压三轴压缩全过程研究Ⅰ:三轴压缩全过程和峰前、峰后卸围压全过程实验[J]. 岩石力学与工程学报, 2001,20(6): 763-767.
[11]黄润秋, 黄 达. 高地应力条件下卸荷速率对锦屏大理岩力学特性影响规律试验研究[J]. 岩石力学与工程学报, 2010,29(1): 21-33.
[12]陈卫忠,吕森鹏,郭小红,等. 脆性岩石卸围压试验与岩爆机理研究[J]. 岩土工程学报, 2010,32(6): 963-969.
[13]周小平,哈秋聆,张永兴,等. 峰前围压卸荷条件下岩石的应力-应变全过程分析和变形局部化研究[J]. 岩石力学与工程学报, 2005,24(18): 3236-3245.
[14]周小平. 卸荷岩体本构理论及其应用[M]. 北京: 科学出版社, 2007.
[15]黄 达,黄润秋. 卸荷条件下裂隙岩体变形破坏及裂纹扩展演化的物理模型试验[J]. 岩石力学与工程学报, 2010,29(3): 502-512.
[16]李建林,王乐华. 卸荷岩体的尺寸效应研究[J]. 岩石力学与工程学报,2003,22(12): 2032-2036.
[17]李建林,王乐华. 节理岩体卸荷非线性力学特性研究[J]. 岩石力学与工程学报,2007,26(10): 1968-1975.
[18]李建林,王乐华,孙旭曙. 节理岩体卸荷各向异性力学特性试验研究[J]. 岩石力学与工程学报,2014,33(5): 892-900.
[19]李建林,孟庆义. 卸荷岩体的各向异性研究[J]. 岩石力学与工程学报, 2001,20(3): 338-341.
[20]SHENG Q, YUE Z Q, LEE C F, et al. Estimating the Excavation Disturbed Zone in the Permanent Shiplock[J]. International Journal of Rock Mechanics & Mining Sciences, 2002,39(2): 165-184.
[21]周火明,盛 谦,李维树,等. 三峡船闸边坡卸荷扰动区范围及岩体力学性质弱化程度研究[J].岩石力学与工程学报,2004,23(7):1078-1081.
[22]李建林,周济芳.三峡工程卸荷岩体声波测试及其参数研究[J].岩石力学与工程学报,2005,24(增1):4642-4646.
[23]汪天翼, 陈汉珍, 肖国强. 水布垭马崖高边坡岩体波速分带及卸荷带质量评价[J]. raybet体育在线 院报,1999, 16(1):52-55.
[24]李天斌,王兰生. 卸荷应力状态下玄武岩变形破坏特征的试验研究[J]. 岩石力学与工程学报,1993,12(4): 321-327.
[25]刘豆豆,陈卫忠,杨建平,等. 脆性岩石卸围压强度特性试验研究[J]. 岩土力学,2009,30(9): 2588-2594.
[26]冯夏庭,张传庆,李邵军,等. 深埋硬岩隧洞动态设计方法[M]. 北京: 科学出版社, 2013.
[27]朱珍德,李道伟,李术才,等. 基于数字图像技术的深埋隧洞围岩卸荷劣化破坏机制研究[J]. 岩石力学与工程学报, 2008,27(7): 1396-1401.
[28]汪 斌, 朱杰兵, 邬爱清,等.锦屏大理岩加、卸载应力路径下力学性质试验研究[J].岩石力学与工程学报,2008,27(10):2138-2145.
[29]任建喜,葛修润,蒲毅彬,等. 岩石卸荷损伤演化机理CT实时分析初探[J]. 岩石力学与工程学报, 2000,19(6): 697-701.
[30]张黎明,王在泉,石 磊,等.不同应力路径下大理岩破坏过程的声发射特性[J].岩石力学与工程学报,2012,31(6): 1230-1236.
[31]向天兵,冯夏庭,陈炳瑞,等. 开挖与支护应力路径下硬岩破坏过程的真三轴与声发射试验研究[J].岩土力学,2008,29(增刊):500-506.
[32]黄 伟,沈明荣,张清照. 高围压下岩石卸荷的扩容性质及其本构模型研究[J]. 岩石力学与工程学报, 2010,29(增2): 3475-3481.
[33]夏才初,闫子舰,王晓东,等. 大理岩卸荷条件下弹黏塑性本构关系研究[J]. 岩石力学与工程学报, 2009,28(3): 459-466.
[34]WENG M C, JENG F S, HSIEH Y M, et al. A Simple Model for Stress-induced Anisotropic Softening of Weak Sandstones[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45(2): 155-166.
[35]李宏哲,夏才初,肖维民. 锦屏水电站大理岩加卸荷本构模型研究[J]. 岩石力学与工程学报, 2010,29(7): 1489-1495.
[36]吕颖慧,刘泉声,江 浩. 基于高应力下花岗岩卸荷试验的力学变形特性研究[J]. 岩土力学, 2010,31(2): 337-344.
[37]陈良森,李长春. 关于岩石的本构关系[J]. 力学进展, 1992,22(2): 173-182.
[38]周维垣,杨若琼,剡公瑞. 岩体边坡非连续非线性卸荷及流变分析[J]. 岩石力学与工程学报, 1997,16(3): 11-17.
[39]吴 刚,孙 钧,吴中如. 复杂应力状态下完整岩体卸荷破坏的损伤力学分析[J]. 河海大学学报, 1997,25(3): 46-51.
[40]陈忠辉,林忠明,谢和平,等. 三维应力状态下岩石损伤破坏的卸荷效应[J]. 煤炭学报,2004,29(1): 31-35.
[41]张黎明,王在泉,孙 辉,等. 岩石卸荷破坏的变形特征及本构模型[J]. 煤炭学报,2009,34(12): 1626-1631.
[42]朱泽奇,盛 谦,张占荣. 脆性岩石侧向变形特征及损伤机理研究[J]. 岩土力学, 2008,29(8): 2137-2143.
[43]赵明阶,许锡宾,徐 蓉. 岩石在三轴加卸荷过程中的一种本构模型研究[J]. 岩石力学与工程学报, 2002,21(5): 626-631.
[44]周 辉,李 震,胡大伟,等. 岩石空心圆柱扭剪仪:中国,CN201410343475.0[P]. 2016-04-20.
[45]汤开宇. 砂板岩加卸荷力学特性试验研究及工程应用[D]. 湖北宜昌:三峡大学,2015.
[46]孙旭曙.节理岩体卸荷各向异性力学特性试验研究及工程应用[D]. 武汉:武汉大学,2013.
PDF(1546 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map