Coarse-grained Parallel Adaptive Hybrid Particle Swarm Optimization Algorithm and Its Application to Optimal Operation of Cascaded Reservoirs

WANG Sen, MA Zhi-peng, LI Shan-zong, XIONG Jing

Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (7) : 149-154.

PDF(2278 KB)
PDF(2278 KB)
Journal of Changjiang River Scientific Research Institute ›› 2017, Vol. 34 ›› Issue (7) : 149-154. DOI: 10.11988/ckyyb.20151020
CONSTRUCTION AND MANAGEMENT OF WATER CONSERVANCY PROJECTS

Coarse-grained Parallel Adaptive Hybrid Particle Swarm Optimization Algorithm and Its Application to Optimal Operation of Cascaded Reservoirs

  • WANG Sen1,2, MA Zhi-peng1, LI Shan-zong3, XIONG Jing1
Author information +
History +

Abstract

To improve the computing efficiency of optimal operation of large-scale cascaded reservoirs, a coarse-grained parallel adaptive hybrid particle swarm optimization (PAHPSO) algorithm is proposed in full use of the popular multi-core computers. The method is based on adaptive hybrid particle swarm optimization (AHPSO) algorithm, and adopts the coarse-grain model and divide-and-conquer strategy of Fork/Join multi-core parallel framework to divide the initial population into multiple small-scale subpopulations, which are assigned to different logical threads averagely for parallel computing. After the optimization computation for all subpopulations, the optimization result sets are merged to obtain the globally optimal solution. The proposed algorithm is applied to the generation and operation of cascaded reservoirs located on the lower stream of Lancang River. Results show that the method gives full play to multi-core computer performance, and the maximum speedup in 4-core parallel environment reaches 3.97 with the time-consuming cutting down by 1 787.2 s. The computing efficiency has improved significantly and it provides a feasible and efficient solution for the optimal operation of increasingly expanding large-scale cascaded reservoirs in China.

Key words

cascaded reservoirs / optimal operation / coarse-grain / multi-core parallel / Fork/Join / particle swarm optimization algorithm

Cite this article

Download Citations
WANG Sen, MA Zhi-peng, LI Shan-zong, XIONG Jing. Coarse-grained Parallel Adaptive Hybrid Particle Swarm Optimization Algorithm and Its Application to Optimal Operation of Cascaded Reservoirs[J]. Journal of Changjiang River Scientific Research Institute. 2017, 34(7): 149-154 https://doi.org/10.11988/ckyyb.20151020

References

[1] 郭生练,陈炯宏,刘 攀,等. 水库群联合优化调度研究进展与展望[J]. 水科学进展,2010,21(4):496-503.
[2] LABADIE J W. Optimal Operation of Multireservoir Systems: State-of-the-art Review[J]. Journal of Water Resources Planning and Management, 2004, 130(2): 93-111.
[3] 刘心愿,朱永辉,郭小虎,等. 水库多目标优化调度技术比较研究[J]. raybet体育在线 院报,2015,32(7):9-14.
[4] 陈 瑞,陈求稳,陈 进. 基于改进遗传算法的生态友好型水库调度[J]. raybet体育在线 院报,2012,29(3):1-6.
[5] 罗军刚,张 晓,解建仓. 基于量子多目标粒子群优化算法的水库防洪调度[J]. 水力发电学报,2013,32(6):69-75.
[6] 冯雁敏,张雪源,梁年生. 松江河梯级水电站短期优化调度数学模型分析[J]. raybet体育在线 院报,2012,29(4):1-6.
[7] 张德发,周建中,卢 鹏,等. 变尺度混沌蜂群算法在梯级库群优化调度中的应用[J]. 水电能源科学,2014,32(4):46-50.
[8] 原文林, 曲晓宁. 混沌蚁群优化算法在梯级水库发电优化调度中的应用研究[J]. 水力发电学报, 2013, 32(3): 47-54.
[9] 王丽萍,孙 平,蒋志强,等. 并行多维动态规划算法在梯级水库优化调度中的应用[J]. 水电能源科学,2015,33(4):43-47.
[10]张忠波,吴学春,张双虎,等. 并行动态规划和改进遗传算法在水库调度中的应用[J]. 水力发电学报,2014,33(4):21-27.
[11]王 森,武新宇,程春田,等. 自适应混合粒子群算法在梯级水电站群优化调度中的应用[J]. 水力发电学报,2012,31(1):38-44.
[12]LEA D. A Java Fork/Join Framework[C]∥Proceedings of the ACM 2000 Conference on Java Grande. San Francisco, California, June 3-5, 2000:36-43.
[13]蒋志强,纪昌明,孙 平,等. 多层嵌套动态规划并行算法在梯级水库优化调度中的应用[J]. 中国农村水利水电,2014,9(9):70-75.
PDF(2278 KB)

Accesses

Citation

Detail

Sections
Recommended

/

Baidu
map