raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (9): 202-211.DOI: 10.11988/ckyyb.20240878

• 水库群多目标优化调度研究专栏 • 上一篇    下一篇

一种考虑电量执行率的短期多目标优化模型

覃晖1,2(), 胡淼1,2, 侯栋凯1,2, 汪涛3,4, 徐杨3,4, 许筱乐1,2, 李永祥1,2, 黎江桥1,2   

  1. 1 华中科技大学 土木与水利工程学院,武汉 430074
    2 华中科技大学 数字流域科学与技术湖北省重点实验室,武汉 430074
    3 中国长江电力股份有限公司,湖北 宜昌 443002
    4 智慧长江与水电科学湖北省重点实验室,湖北 宜昌 443002
  • 收稿日期:2024-08-21 修回日期:2024-11-11 出版日期:2025-09-04 发布日期:2025-09-04
  • 作者简介:

    覃晖(1983-),男,湖北宜城人,教授,博士,研究方向为水库群多目标优化调度。E-mail:

  • 基金资助:
    国家重点研发计划项目(2021YFC3200303); 中国长江电力股份有限公司科研项目(Z242202003)

Short-term Multi-objective Optimization Model Considering Execution Rate of Electricity

QIN Hui1,2(), HU Miao1,2, HOU Dong-kai1,2, WANG Tao3,4, XU Yang3,4, XU Xiao-le1,2, LI Yong-xiang1,2, LI Jiang-qiao1,2   

  1. 1 School of Civil and Hydraulic Engineering,Huazhong University of Science and Technology,Wuhan 430074,China
    2 Hubei Key Laboratory of Digital Valley Science and Technology,Huazhong University of Science and Technology,Wuhan 430074,China
    3 China Yangtze Power Co., Ltd., Yichang 443002,China
    4 Hubei Key Laboratory of Intelligent Yangtze and Hydroelectric Science, Yichang 443002,China
  • Received:2024-08-21 Revised:2024-11-11 Published:2025-09-04 Online:2025-09-04

摘要:

梯级水库群短期优化调度受电站水力联系、环境等诸多因素影响,其调度决策具有高度复杂性。围绕梯级水库群短期多目标联合优化调度问题,首先利用数据挖掘方法对水电站历史数据进行聚类数量分析,提取基于最优聚类数的典型出力。进一步考虑电站的电量执行率,以发电量最大与计划执行完成率最高为目标,使用电站的特征相似度综合衡量偏差程度与调度目标满足程度,建立水库群短期多目标优化调度模型,利用NSGA-II对模型进行求解,最后基于熵权法与多准则妥协解排序法优选调度方案作为梯级水库运行的最终方案。研究结果表明,所提模型能够兼顾发电效益与出力过程偏差,量化不同计划执行完成率下的发电优化效果,优选梯级调度计划,为调度决策者提供可靠的参考信息。

关键词: 短期优化, 多目标调度, 数据挖掘, 典型出力提取, 计划执行完成率

Abstract:

[Objective] Short-term optimal scheduling of cascade reservoirs is complicated by hydraulic connections among power stations and environmental factors, and most studies neglect the risk of deviating from normal operations. Therefore, this paper proposes a plan completion rate indicator that comprehensively measures deviation and scheduling target satisfaction using the Feature Similarity Index (FSI), and constructs a short-term multi-objective optimization model aiming to maximize cascade power generation and plan completion rate. [Methods] For the short-term multi-objective joint optimization scheduling of the lower-Jinsha River cascade, K-means clustering of historical plant data was first conducted. Silhouette coefficient (SC) and Davies-Bouldin index (DBI) were used to select the optimal number of clusters for each station on a monthly basis. Typical generation patterns were then extracted based on these optimal clusters to provide a data foundation for the subsequent scheduling model. Further, a multi-objective model maximising power generation and plan-completion rate, using the Feature Similarity Index (FSI) to comprehensively evaluate deviation and the degree of scheduling target fulfillment, subject to water balance, water level, discharge and output constraints, was built and solved by NSGA-II (using a water-level corridor to handle hard constraints). The final scheme was selected using the entropy weight method and the VIKOR multi-criteria compromise ranking method. [Results] In the case study, Pareto solutions showed a clear trade-off between power generation (921.52-922.13 million kW·h, range 0.61 million kW·h) and FSI (0.831 6-0.872 6, range 0.041) with evenly distributed results. Entropy weighting assigned weights of 0.513 2 to generation and 0.486 8 to FSI. The VIKOR-selected compromise scheme (closeness coefficient 0.002 2) yielded 921.98 million kW·h (7.4% above normal 857.2 million kW·h) and an FSI of 0.861 2, occupying 74.63% and 72.03% of their respective ranges. Except for Xiluodu, the outputs variation trend of Xiangjiaba, Three Gorges, and Gezhouba plants generally aligned with the typical generation patterns. [Conclusion] The results show that the model effectively balances power benefits with output process deviation and quantifies generation improvements under varying plan completion rates. By scientifically selecting optimal cascade scheduling schemes, it offers reliable references for operators of the cascade reservoirs in the lower-Jinsha River-Three Gorges region and supporting medium-/long-term schedule adjustments as well as the formulation of reservation-period plans.

Key words: short-term optimization, multi-objective scheduling, data mining, typical output extraction, plan completion rate

中图分类号: 

Baidu
map