一种考虑电量执行率的短期多目标优化模型

覃晖, 胡淼, 侯栋凯, 汪涛, 徐杨, 许筱乐, 李永祥, 黎江桥

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (9) : 202-211.

PDF(8207 KB)
PDF(8207 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (9) : 202-211. DOI: 10.11988/ckyyb.20240878
水库群多目标优化调度研究专栏

一种考虑电量执行率的短期多目标优化模型

作者信息 +

Short-term Multi-objective Optimization Model Considering Execution Rate of Electricity

Author information +
文章历史 +

摘要

梯级水库群短期优化调度受电站水力联系、环境等诸多因素影响,其调度决策具有高度复杂性。围绕梯级水库群短期多目标联合优化调度问题,首先利用数据挖掘方法对水电站历史数据进行聚类数量分析,提取基于最优聚类数的典型出力。进一步考虑电站的电量执行率,以发电量最大与计划执行完成率最高为目标,使用电站的特征相似度综合衡量偏差程度与调度目标满足程度,建立水库群短期多目标优化调度模型,利用NSGA-II对模型进行求解,最后基于熵权法与多准则妥协解排序法优选调度方案作为梯级水库运行的最终方案。研究结果表明,所提模型能够兼顾发电效益与出力过程偏差,量化不同计划执行完成率下的发电优化效果,优选梯级调度计划,为调度决策者提供可靠的参考信息。

Abstract

[Objective] Short-term optimal scheduling of cascade reservoirs is complicated by hydraulic connections among power stations and environmental factors, and most studies neglect the risk of deviating from normal operations. Therefore, this paper proposes a plan completion rate indicator that comprehensively measures deviation and scheduling target satisfaction using the Feature Similarity Index (FSI), and constructs a short-term multi-objective optimization model aiming to maximize cascade power generation and plan completion rate. [Methods] For the short-term multi-objective joint optimization scheduling of the lower-Jinsha River cascade, K-means clustering of historical plant data was first conducted. Silhouette coefficient (SC) and Davies-Bouldin index (DBI) were used to select the optimal number of clusters for each station on a monthly basis. Typical generation patterns were then extracted based on these optimal clusters to provide a data foundation for the subsequent scheduling model. Further, a multi-objective model maximising power generation and plan-completion rate, using the Feature Similarity Index (FSI) to comprehensively evaluate deviation and the degree of scheduling target fulfillment, subject to water balance, water level, discharge and output constraints, was built and solved by NSGA-II (using a water-level corridor to handle hard constraints). The final scheme was selected using the entropy weight method and the VIKOR multi-criteria compromise ranking method. [Results] In the case study, Pareto solutions showed a clear trade-off between power generation (921.52-922.13 million kW·h, range 0.61 million kW·h) and FSI (0.831 6-0.872 6, range 0.041) with evenly distributed results. Entropy weighting assigned weights of 0.513 2 to generation and 0.486 8 to FSI. The VIKOR-selected compromise scheme (closeness coefficient 0.002 2) yielded 921.98 million kW·h (7.4% above normal 857.2 million kW·h) and an FSI of 0.861 2, occupying 74.63% and 72.03% of their respective ranges. Except for Xiluodu, the outputs variation trend of Xiangjiaba, Three Gorges, and Gezhouba plants generally aligned with the typical generation patterns. [Conclusion] The results show that the model effectively balances power benefits with output process deviation and quantifies generation improvements under varying plan completion rates. By scientifically selecting optimal cascade scheduling schemes, it offers reliable references for operators of the cascade reservoirs in the lower-Jinsha River-Three Gorges region and supporting medium-/long-term schedule adjustments as well as the formulation of reservation-period plans.

关键词

短期优化 / 多目标调度 / 数据挖掘 / 典型出力提取 / 计划执行完成率

Key words

short-term optimization / multi-objective scheduling / data mining / typical output extraction / plan completion rate

引用本文

导出引用
覃晖, 胡淼, 侯栋凯, . 一种考虑电量执行率的短期多目标优化模型[J]. raybet体育在线 院报. 2025, 42(9): 202-211 https://doi.org/10.11988/ckyyb.20240878
QIN Hui, HU Miao, HOU Dong-kai, et al. Short-term Multi-objective Optimization Model Considering Execution Rate of Electricity[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(9): 202-211 https://doi.org/10.11988/ckyyb.20240878
中图分类号: TV697.1+2   

参考文献

[1]
LITTLE J D C. The Use of Storage Water in a Hydroelectric System[J]. Journal of the Operations Research Society of America, 1955, 3(2): 187-197.
[2]
刘建华, 段虞荣. 网络规划法在梯级水电站短期优化调度中的应用[J]. 重庆大学学报(自然科学版), 1991, 14(1): 25-32.
(LIU Jian-hua, DUAN Yu-rong. The Application of Network Programming Method on the Short Term Optimal Scheduling for Cascaded Hydropower Stations[J]. Journal of Chongqing University (Natural Science Edition), 1991, 14(1): 25-32. (in Chinese))
[3]
王伟. 耦合短期调峰特征的梯级电站长期发电调度研究[D]. 武汉: 武汉大学, 2018.
(WANG Wei. Study on Long-term Generation Scheduling of Cascade Hydropower Stations Coupled with Short-term Peak Shaving Characteristics[D]. Wuhan: Wuhan University, 2018. (in Chinese))
[4]
覃晖. 流域梯级电站群多目标联合优化调度与多属性风险决策[D]. 武汉: 华中科技大学, 2011.
(QIN Hui. Multi-objective Optimal Operation and Multi-attribute Risk Decision Making of Cascaded Hydropower Stations[D]. Wuhan: Huazhong University of Science and Technology, 2011. (in Chinese))
[5]
黄春雷, 赵永龙, 过夏明. 基于日典型负荷的水电站群日计划方式[J]. 水电自动化与大坝监测, 2005(4):45-47,77.
(HUANG Chun-lei, ZHAO Yong-long, GUO Xia-ming. Short-term Scheduling for Cascade Hydropower Stations Based on Typical Daily Load[J]. Dam Observation and Geotechnical Tests, 2005(4):45-47,77. (in Chinese))
[6]
纪昌明, 马皓宇, 彭杨. 面向梯级水库多目标优化调度的进化算法研究[J]. 水利学报, 2020, 51(12): 1441-1452.
(JI Chang-ming, MA Hao-yu, PENG Yang. Research on Evolutionary Algorithms for Multi-objective Optimal Operation of Cascade Reservoirs[J]. Journal of Hydraulic Engineering, 2020, 51(12): 1441-1452. (in Chinese))
[7]
ZHAO H. Design and Implementation of an Improved K-means Clustering Algorithm[J]. Mobile Information Systems, 2022(1): 6041484.
[8]
熊志坚. 面向超多目标优化问题的进化算法研究[D]. 秦皇岛: 燕山大学, 2022.
(XIONG Zhi-jian. Research on Evolutionary Algorithms for Many-objective Optimization Problems[D]. Qinhuangdao: Yanshan University, 2022. (in Chinese))
[9]
杨钰琪. 多尺度电网负荷需求下水电站优化运行方式研究[D]. 武汉: 华中科技大学, 2022.
(YANG Yu-qi. Study on Optimal Operation of Hydropower Stations Under the Multi-scale Load Demands of Power Grid[D]. Wuhan: Huazhong University of Science and Technology, 2022. (in Chinese))
[10]
SRINIVAS N, DEB K. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms[J]. Evolutionary Computation, 1994, 2(3): 221-248.
[11]
DEB K, PRATAP A, AGARWAL S, et al. A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[12]
卢有麟, 陈金松, 祁进, 等. 基于改进熵权和集对分析的水库多目标防洪调度决策方法研究[J]. 水电能源科学, 2015, 33(1): 43-46.
(LU You-lin, CHEN Jin-song, QI Jin, et al. Multi-objective Decision Making Method for Reservoir Flood Operation Based on Improved Entropy Weight and Set Pair Analysis[J]. Water Resources and Power, 2015, 33(1): 43-46. (in Chinese))
[13]
李克飞, 纪昌明, 张验科. 水电站水库群多目标联合调度风险评价决策研究[J]. 中国农村水利水电, 2012(10): 120-122.
摘要
水电站水库群多目标联合调度涉及不确定性因素众多,寻求风险可接受水平下的最佳调度方案存在诸多困难。一方面对梯级水电站水库群联合调度过程中产生的各类风险进行综合分析,并在此基础上构建联合调度风险评价指标体系及多目标风险决策模型,另一方面基于熵权法确定权重的思想确定多个风险评价指标的权重,并采用逼近于理想解(TOPSIS)的方法对模型的非劣解集方案进行优选排序,以获得最佳调度方案。溪洛渡—三峡梯级水库群联合调度的实例应用结果表明,所建模型与方法能兼顾各个调度部门的效益与风险,并为管理人员的调度决策提供一定的技术支撑。
(LI Ke-fei, JI Chang-ming, ZHANG Yan-ke. A Study of Risk Assessment and Decision-making for Hydropower Reservoirs’ Multi-objective Joint Operation[J]. China Rural Water and Hydropower, 2012(10): 120-122. (in Chinese))
The hydropower reservoirs multi-objective operation involves many uncertain factors, and there are many difficulties to seek the best scheduling scheme under the acceptable risk level. In this paper, on the one hand, based on the comprehensive analysis of risk factors in process of joint operation, the risk evaluation index system of joint operation and the multi-objective risk decision-making model are constructed, and on the other hand, to determine the weight of the risk evaluation index based on entropy method, use the TOPSIS to sort the Pareto programs to get the best scheduling program. Apply the model to the joint operation of Xiluodu-Three Gorges cascade hydropower stations. The results show that the model and method can both the benefits and risks of various scheduling department and provide some technical support for making the joint operation scheme of the management.
[14]
苏律文, 杨侃, 邓丽丽, 等. 主观偏好和改进熵权的TOPSIS法在长江中游水库多目标调度中的应用[J]. 水电能源科学, 2018, 36(9): 76-802.
(SU Lü-wen, YANG Kan, DENG Li-li, et al. Application of TOPSIS Method Based Subjective Preference and Improved Entropy Weight in Multi-objective Scheduling of Reservoirs in Middle Reaches of the Yangtze River[J]. Water Resources and Power, 2018, 36(9): 76-802. (in Chinese))
[15]
OPRICOVIC S, TZENG G H. Extended VIKOR Method in Comparison with Outranking Methods[J]. European Journal of Operational Research, 2007, 178(2): 514-529.
[16]
林宇亮, 左伟俊, 邢浩, 等. 基于组合赋权-VIKOR法的山区施工便道方案优选模型[J]. 中南大学学报(自然科学版), 2024, 55(2): 445-456.
(LIN Yu-liang, ZUO Wei-jun, XING Hao, et al. Optimization Model on Construction Scheme of Pioneer Road in Mountainous Area Based on Combination Weight and VIKOR Method[J]. Journal of Central South University (Science and Technology), 2024, 55(2): 445-456. (in Chinese))
[17]
OPRICOVIC S, TZENG G H. Compromise Solution by MCDM Methods: A Comparative Analysis of VIKOR and TOPSIS[J]. European Journal of Operational Research, 2004, 156(2): 445-455.

基金

国家重点研发计划项目(2021YFC3200303)
中国长江电力股份有限公司科研项目(Z242202003)

编辑: 罗 娟
PDF(8207 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map