PDF(8834 KB)
PDF(8834 KB)
PDF(8834 KB)
溢洪道转弯段消力池水力特性优化模拟
Simulation on Optimizing Hydraulic Characteristics of Stilling Pool in Turning Section of Spillway
溢洪道转弯段消力池受弯道离心力和惯性力影响,往往会出现流态不佳、两岸水深和流速分布不均等不良水力现象。为探索该复杂水流问题,以新疆XBT水库溢洪道消力池为研究对象,设计17个模拟方案,将流态、水深、平均流速和消能率作为研究指标进行分析与评价。研究表明:不同模拟方案对转弯段消力池内部水力特性影响不同;为改善转弯段消力池内不良水力现象,将池深加深至6.55 m、采用矩形敞口出口型式并联合9根交错糙条可取得最佳流态,即中后段壅水问题得到解决并消除了凹岸水流溢出边墙现象,此时凹岸水深相较原方案降低30.22%,两岸水位差仅为0.02 m;通过对消力池内典型断面平均水深和动能计算,消力池出口断面平均水深相较原方案降低了49.97%,消能率由18.97%提高至62.63%。
Affected by corner centrifugal force and inertial force, stilling pool at the turning section of spillway often exhibits unfavorable flow conditions characterized by uneven water depth and flow velocity distribution. To address this complex flow issue, we conducted simulations on stilling pool at the turning section of the spillway of XBT reservoir in Xinjiang. We designed 17 simulation schemes and selected flow pattern, water depth, average flow velocity, and energy dissipation rate as evaluation indices. Results indicate that the hydraulic characteristics of the turning-section stilling pool vary in different simulation schemes. To mitigate adverse hydraulic phenomena in the stilling pool, deepening the pool depth to 6.55 m, adopting a rectangular open outlet type, and equipping 9 staggered rough strips can achieve optimal flow condition. This configuration resolves the backwater problem in the middle and rear sections and eliminated overflow along the walls. Notably, the water depth at concave bank declined by 30.22% compared to the original scheme, with a marginal water level difference of only 0.02 m between the two sides. According to calculation results of the average water depth and kinetic energy of typical section in the stilling pool, the average water depth at the outlet section decreased by 49.97% from the original scheme, while energy dissipation rate enhanced from 18.97% to 62.63%.
转弯段消力池 / 辅助消能工 / 水力特性 / 消能率 / 数值模拟 / 溢洪道
stilling pool in turning section / auxiliary energy dissipator / hydraulic characteristics / energy consumption rate / numerical simulation / spillway
| [1] |
张建民. 高坝泄洪消能技术研究进展和展望[J]. 水力发电学报, 2021, 40(3): 1-18.
(
|
| [2] |
王皓冉, 谢辉, 陈永灿, 等. 消力池底板混凝土磨蚀智能检测与数值仿真[J]. 清华大学学报(自然科学版), 2023, 63(7): 1095-1103.
(
|
| [3] |
杜振康, 尹进步, 朱光明, 等. 不同扩散角下单侧渐扩消力池水力特性研究[J]. 水资源与水工程学报, 2022, 33(2): 144-151.
(
|
| [4] |
李瑶, 杨胜发, 付旭辉. 弯曲溢洪道挑流消能试验研究[J]. 水科学进展, 2020, 31(3): 413-421.
(
|
| [5] |
张靖, 滕晓敏, 张庆华. 透水斜槛参数对溢洪道弯道水流改善效果的影响[J]. 水利水电科技进展, 2022, 42(3):25-31.
(
|
| [6] |
杨磊, 徐宏亮, 唐培磊, 等. 许家崖水库溢洪道消能防冲方案模型试验研究[J]. 水力发电学报, 2014, 33(6): 149-154.
(
|
| [7] |
何梦星, 林颖典, 黄天炜, 等. 弯道对植被群河道水流结构影响的试验研究[J]. 水力发电学报, 2022, 41(11):11-20.
(
|
| [8] |
曹玉芬, 高术仙, 白玉川. 正弦派生曲线弯道水流结构特征实验研究[J]. 水力发电学报, 2020, 39(4):21-32.
(
|
| [9] |
周建银, 邵学军, 假冬冬, 等. 弯道出流横向流速的衰减长度[J]. 水科学进展, 2014, 25(3): 392-400.
(
|
| [10] |
周建银, 邵学军, 假冬冬, 等. 弯道出流横向流速发展过程的解析解[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(7): 583-588.
(
|
| [11] |
曹玉芬, 白玉川, 高术仙. 连续弯道水槽水流结构与床面形态试验研究[J]. 天津大学学报(自然科学与工程技术版), 2020, 53(12):1226-1235.
(
|
| [12] |
|
| [13] |
黄春花, 孙颖, 陈肇和, 等. 急流弯道双曲底板的体形设计[J]. 水利学报, 2003, 34(8): 1-5.
(
|
| [14] |
高学平, 井书光, 贾来飞. 溢洪道弯道水流影响因素研究[J]. 水力发电学报, 2014, 33(4): 132-138.
(
|
| [15] |
魏祖涛, 侍克斌, 陈成林, 等. 溢洪道加糙对水流流态影响的试验研究[J]. 水资源与水工程学报, 2010, 21(5): 76-78.
(
|
| [16] |
李凡琦, 牧振伟, 孙德旭, 等. 基于正交设计的糙条消能工评价方法[J]. 排灌机械工程学报, 2020, 38(5): 481-487.
(
|
| [17] |
张红红, 牧振伟, 李凡琦, 等. 基于量纲分析的糙条高度计算方法[J]. 排灌机械工程学报, 2020, 38(9): 904-909.
(
|
| [18] |
张红红, 牧振伟, 李凡琦, 等. 糙条消能工对弯道水流动能调整试验研究[J]. 水资源与水工程学报, 2020, 31(3): 162-168.
(
|
| [19] |
|
| [20] |
樊帆, 牧振伟, 张红红, 等. 溢洪道弯段糙条消能工消能率试验研究[J]. raybet体育在线
院报, 2021, 38(12): 104-110.
为研究溢洪道弯段布置糙条消能工的消能特性,在新疆“635”溢洪道整治工程的研究基础上,通过量纲分析,建立了糙条消能率多因素影响模型;采用正交试验原理,对溢洪道弯段糙条消能工的布置进行正交试验并根据试验结果进行多重回归分析,得到了反映糙条布置参数和溢洪道工程参数的消能率计算公式;然后为探究各因素影响大小进行了相关性分析,并定义无量纲因子k来反映糙条消能工的综合特性。结果表明:溢洪道工程参数对消能率的影响较大,而糙条布置参数除布置角度外影响均较小;无量纲因子k与消能率和水面横比降均呈负相关关系,且改变糙条布置参数对水面横比降的影响较消能率大;k值的波动范围在0.016~0.049之间,当消能率最大时,k=0.025,水面横比降最小时,k=0.037。提出的消能率多因素影响模型是一种半理论半经验计算公式,可为实际工程设计提供理论依据。
(
To obtain the energy dissipation characteristics of rough strips arranged in the bends of spillway, a multi-factor influence model of the energy dissipation rate of the rough strips was established based on the research of the Xinjiang “635” spillway rectification project via dimensional analysis. According to the principle of orthogonal experiment, orthogonal test was conducted on the layout of the rough strip energy dissipator in the spillway bend, and multiple regression analysis was accomplished according to the test results to derive the calculation formula of energy dissipation rate reflecting the layout parameters of rough strips and the engineering parameters of the spillway. Moreover, correlation analysis was carried out to explore the influence of each factor, and a dimensionless factor <i>k</i> was defined to reflect the comprehensive characteristics of the rough strip energy dissipator. The findings are concluded as follows: the engineering parameters of spillway have remarkable impact on the energy dissipation rate, while the layout parameters of rough strips have little effect except for the arrangement angle. The dimensionless factor <i>k</i> was in a negative correlation with the energy dissipation rate and the transversal slope of water surface. In addition, changing the layout parameters of rough strips exerted a greater impact on the transversal slope of water surface than the energy dissipation rate. The value of <i>k</i> ranged between 0.016 and 0.049. When the energy dissipation rate reached the peak, <i>k</i>=0.025; when the transversal slope of water surface hit the bottom, <i>k</i>=0.037. As a semi-theoretical and semi-empirical calculation formula, the proposed multi-factor influence model for energy dissipation rate could offer theoretical basis for actual engineering design.
|
| [21] |
孙德旭, 牧振伟, 李凡琦, 等. 弯段溢洪道导流墩联合糙条消能工水力特性试验研究[J]. 水资源与水工程学报, 2019, 30(2): 166-171.
(
|
| [22] |
马豪, 牧振伟, 樊帆, 等. 连续弯段溢洪道糙条消能工整流特性试验研究[J]. raybet体育在线
院报, 2024, 41(3): 71-78.
为探究糙条消能工在连续弯段溢洪道上导流效果影响因子排序和糙条导流特性,采取9因素3水平的正交试验设计方案进行物理模型试验,引入超高变异系数C<sub>v</sub>对导流效果进行评价;对影响水流结构的因子进行量纲分析及多元回归处理,建立评价导流效果的多因素影响模型。结果表明:糙条布设角度和糙条高度分别对2个弯段中水流结构影响最大,这2个因素直接影响糙条平衡水面差、稳定流态效果的优劣。剔除影响较小的共用因素,得出糙条消能工最优导流布置方案;各类函数模型中最大拟合优度为0.822,拟合方程对实测值进行对比验证,二者相对误差范围在2.78%~7.15%之间。研究成果可为连续弯段溢洪道整流分析提供理论参考。
(
|
| [23] |
黄智敏, 何小惠, 黄健东, 等. 阳江抽水蓄能电站下库溢洪道消能研究[J]. 水力发电学报, 2007, 26(5): 92-96.
(
|
| [24] |
刘伯承, 李广宁, 韩延成, 等. 湿陷性黄土地区明渠陡槽加墩消能工优化试验[J]. raybet体育在线
院报, 2024, 41(5):95-102.
明渠陡槽加墩是一种高效消能工布置方式,在特定条件下具有很高的技术竞争优势,但目前国内相关研究甚少。针对甘肃庆阳小崆峒沟雨水下塬排放工程的明渠陡槽加墩段进行了1∶30大比尺水工模型试验研究,试验发现初步方案沿程水流流态不稳定,存在向外泼溅溢出现象,危及黄土边坡的结构稳定。为此对初步方案进行了优化研究,试验发现,通过缩短消能墩排距,可以显著减小水面波动,使沿程水深分布均匀,流速降低,沿程不再出现水流向外泼溅溢出现象。消能墩排距由H/i缩短至0.5H/i后,在最大设计流量工况下,水面波动减小72.5%,平均流速降低40.1%,总消能率由87.9%提高至94.6%。
(
|
| [25] |
俞晓伟, 牧振伟, 高尚. 低弗劳德数梯形墩-悬栅消力池水力特性[J]. raybet体育在线
院报, 2023, 40(1):107-115.
针对大单宽流量、低弗劳德数消力池内消能问题,通过物理模型试验方法,对比分析消力池内加设梯形墩和悬栅消能工后水力特性和消能效果,优化梯形墩-悬栅消力池布置形式。结果表明:在低弗劳德数水流条件下,梯形墩-悬栅联合消能工断面水深分布均匀,消力池底板沿程压力分布梯度和时均压力分布系数波动幅度较小,整体稳定性较优;动能修正系数基本保持在1<α<2的范围内,可有效改善入池断面流速分布;消能率由传统消力池的52.25%、70.37%、75.89%分别提升至56.74%、75.95%、79.22%;梯形墩-悬栅消力池内悬栅单排等间距、高度与尾坎同高布置时,梯形墩呈双排交错形式布置在距池首0.35L左右处对于整体流态改善明显,消力池出口流速可降至0.4 m/s,消能率提高至59.63%、76.12%、79.37%,研究结果可为同类工程的底流消能问题提供一种新思路。
(
The layout form of trapezoidal pier and suspension grid in stilling basin is optimized through comparative analysis of the hydraulic characteristics and energy dissipation effect in the presence and in the absence of trapezoidal pier and suspended grid in stilling basin via physical model test. Results show that under the condition of water flow of low Froude number, the trapezoidal pier-suspended grid joint energy dissipator could generate uniform water depth distribution, smaller fluctuation range of pressure distribution gradient along the stilling basin floor and time-averaged pressure distribution coefficient, and better overall stability. The kinetic energy correction coefficient basically maintained in the range of 1 < <i>α</i>< 2, which can effectively improve the velocity distribution at the section of pool entrance. The energy dissipation rate increased from 52.25%, 70.37% and 75.89% to 56.74%, 75.95% and 79.22%, respectively. With the trapezoidal pier at about 0.35 L away from the head of stilling basin with staggered double row when the height of suspension grid is the same as that of tail ridge and arranging in single rows at equal spacing in the trapezoidal pier-suspension grid stilling basin, the overall flow pattern improves obviously, the flow rate at the outlet of stilling basin reduces to 0.4 m/s, and the energy dissipation rate increases to 59.63%, 76.12% and 79.37%. The research results offer an idea for the underflow energy dissipation of similar projects.
|
| [26] |
周凯, 牧振伟, 周镇, 等. 底流消力池墩栅联合消能工水力特性数值模拟研究[J]. 水资源与水工程学报, 2023, 34(2): 142-148, 156.
(
|
| [27] |
吴战营, 牧振伟. 消力池内悬栅辅助消能工优化试验[J]. 水利水电科技进展, 2014, 34(1): 27-31.
(
|
| [28] |
梁洪儒, 谭燕平, 刘星, 等. 低水头坝消力池内悬栅辅助消能工的优化试验研究[J]. 水力发电学报, 2018, 37(1): 79-86.
(
|
| [29] |
罗永钦. 突跌渐扩消力池体型优化及水力特性分析[J]. 水力发电学报, 2016, 35(2): 61-66.
(
|
| [30] |
|
| [31] |
张文皎, 刘磊, 武彩萍, 等. 开敞式宽大单泄槽溢洪道水力特性及优化布置研究[J]. 水利水运工程学报, 2022(6): 25-34.
(
|
/
| 〈 |
|
〉 |