院报 ›› 2023, Vol. 40 ›› Issue (9): 155-161.DOI: 10.11988/ckyyb.20220421

• 工程安全与灾害防治 • 上一篇    下一篇

基于DCGAN的水下结构物表面缺陷图像生成

程风雯1, 甘进1,2, 李星2, 吴卫国3   

  1. 1. 武汉理工大学 船海与能源动力工程学院,武汉 430063;
    2.国家大坝安全工程技术研究中心,武汉 430023;
    3.武汉理工大学 绿色智能江海直达船舶与邮轮游艇研究中心,武汉 430063
  • 收稿日期:2022-04-20 修回日期:2022-07-04 出版日期:2023-09-01 发布日期:2023-09-01
  • 通讯作者: 甘 进(1982-),男,湖北武汉人,副教授,博士,研究方向为大型工程结构水下检测技术与装备。E-mail: ganjinwut@163.com
  • 作者简介:程风雯(1999-),女,湖北武汉人,硕士研究生,研究方向为大型工程结构水下检测技术与装备。E-mail: althea_cheng@163.com
  • 基金资助:
    国家大坝安全工程技术研究中心开放基金项目(CX2020B09)

Image Generation for Surface Defects of Underwater Structures Based on Deep Convolutional Generative Adversarial Networks

CHENG Feng-wen1, GAN Jin1,2, LI Xing2, WU Wei-guo3   

  1. 1. School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China;
    2. National Research Center on Dam Safety Engineering Technology, Wuhan 430023, China;
    3. Green & Smart River-Sea-Going Ship Cruise and Yacht Research Center, Wuhan University of Technology, Wuhan 430063, China
  • Received:2022-04-20 Revised:2022-07-04 Online:2023-09-01 Published:2023-09-01

摘要: 为提升水下结构物表面缺陷图像数据集的质量和规模,促进深度学习相关方法在水下检测领域中的应用,开展数据增强方法研究,提出一种基于深度卷积生成对抗网络(DCGAN)的水下结构物表面缺陷图像生成方法。首先,设计了一种水下结构物表面缺陷图像采集装置,通过改变拍摄距离和补充光照强度,探究出一种保证水下图像质量的采集方式;其次,通过改进损失函数优化DCGAN,建立水下结构物表面裂缝图像生成模型,实现了水下结构物表面缺陷图像的生成;最后,利用YOLOv5检测网络验证生成图像的有效性。结果表明:生成的水下结构物表面裂缝图像平均峰值信噪比为25.142 6 dB,平均结构相似性为0.716 8,将生成图像和真实图像共同输入检测模型可有效提高检测精度。研究成果为大坝和引水隧洞等水工结构物的健康检测提供技术支撑。

关键词: 水下结构物, 表面缺陷检测, 深度学习, 图像生成, 深度卷积生成对抗网络

Abstract: The aim of this study is to improve the quality and quantity of the dataset for surface defect images of underwater structures and facilitate the application of deep learning methods in underwater detection. A method for generating surface defect images of underwater structures is proposed based on the deep convolutional generative adversarial networks (DCGAN). First, the image quality is guaranteed by designing an underwater image acquisition device through the adjustment of shooting distance and the supplement of light intensity. Second, by improving the loss function and optimizing DCGAN, the image generation model for surface defect of underwater structures is established. Finally, the effectiveness of the generated images is assessed using the YOLOv5 detection network. The results demonstrate an average peak signal-to-noise ratio of 21.142 6 dB and an average structural similarity of 0.716 8 for the generated crack images of underwater structures. Integrating the generated and real images into the detection model effectively improves the accuracy of detection. The study provides technical support for the health detection of hydraulic structures such as dams and headrace tunnels.

Key words: underwater structure, surface defect detection, deep learning, image generation, deep convolutional generative adversarial networks

中图分类号: 

Baidu
map