为了探究不同海砂掺量和振动频率对海砂复合固化淤泥动应力-动应变(σd-εd)关系、动弹性模量及阻尼比的影响,以海砂复合固化淤泥为研究对象,利用GDS动三轴仪在不同频率下进行分级加卸载试验。试验结果表明:动应力较小时,σd-εd曲线呈线性关系,逐级增大动应力,动应变增长迅速直至破坏;同一频率下,应力-应变曲线随海砂掺量的增加先上升后下移,掺量为15%的固化淤泥曲线位于最上方;同一海砂掺量,高频下的动变形小于低频、动强度高于低频;不同海砂掺量、不同频率下固化淤泥动弹性模量Ed均随动应力σd的增大而先增大后减小,阻尼比λ随动应力σd的增大先略有减小后逐渐增大;滞回耗能ΔW随动应力σd的增加呈现出非线性增大的趋势,相同动应力下对应的滞回耗能ΔW随频率的增加而减小;增大频率和掺入适量海砂可以提高固化淤泥的动弹性模量,有效降低固化淤泥的阻尼比。研究成果可供探讨海砂复合固化淤泥的动力特性和设计提供试验和理论参考。
Abstract
Graded loading and unloading test was conducted with different frequencies by using GDS dynamic triaxial instrument to explore the influences of sea sand content and vibration frequency on the dynamic stress-dynamic strain (σd-εd) relationship, dynamic elastic modulus and damping ratio of sea sand composite solidified silt. Test results show that the σd-εd curve is linear at small dynamic stress; when dynamic stress is increased stepwise, dynamic strain increases rapidly until failure. At a given frequency, the stress-strain curve first rises and then moves down with the increase of sea sand content; the stress-strain curve of solidified silt with 15% dosage of sea sand is at the top. At a given sea sand content, the dynamic deformation under high frequency is smaller than that at low frequency, and the dynamic strength is higher than that at low frequency. Under varying sea sand content and frequency and growing dynamic stress, the dynamic elastic modulus Ed of solidified silt first increases and then declines, the damping ratio λ decreases slightly and then gradually increases, and the hysteretic energy consumption ΔW increases nonlinearly. The corresponding ΔW under the same dynamic stress decreases with the increase of frequency. By increasing the frequency and mixing a proper amount of sea sand, the dynamic elastic modulus of solidified silt can be improved, and the damping ratio of the solidified silt can be effectively reduced.
关键词
海砂复合固化淤泥 /
GDS动三轴试验 /
动应力-动应变曲线 /
动弹性模量 /
阻尼比 /
滞回耗能
Key words
sea sand composite solidified silt /
GDS dynamic triaxial test /
dynamic stress-strain curve /
dynamic elastic modulus /
damping ratio /
hysteretic energy consumption
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王东星,陈政光.氯氧镁水泥固化淤泥力学特性及微观机制[J].岩土力学,2021,42(1):77-85,92.
[2] 董宝中,陈永超.离子固化淤泥土的强度特征与破坏模式[J].安徽理工大学学报(自然科学版),2019,39(4):52-55.
[3] SAWA K, TOMOHISA S, INAZUMI S, et al. Hardening Treatment of Muddy Soil with Coal Fly Ashes[J]. Journal of the Society of Materials Science Japan, 2000, 49(3):348-351.
[4] 李丽芬.水泥-消石灰-半水石膏固化红土的组成、结构与性能关系的研究[D].南宁:广西大学,2008.
[5] 刘平平, 许燕宾, 艾志伟, 等. 水泥固化淤泥质土-砂混合软土的工程特性研究[J]. 江西理工大学学报, 2014(5):45-50.
[6] 乔京生,王旭影,王冠泓,等.粒化高炉矿渣微粉固化淤泥质土的动力特性及微观机理[J].硅酸盐通报,2021,40(7):2306-2312.
[7] 张向东,任 昆.煤渣改良土的阻尼比影响因素试验研究[J].公路交通科技,2019,36(10):43-51.
[8] 文畅平,任睆遐.生物酶改良膨胀土的动骨干曲线模型[J].中南大学学报(自然科学版),2021,52(4):1109-1117.
[9] 陈 宝,郭家兴,李池龙.交通荷载下石灰改良软土路基的动力特性试验研究[J].路基工程,2014(5):103-109.
[10] CHEN B, GUO J, LI C L. Test Study on Dynamic Characteristics of Lime Stabilized Soft Soil Subgrade under Traffic Loading[J]. Subgrade Engineering, 2014, doi: 10.1063/1.114528.
[11] WANG J, WANG Q, ZHONG X M, et al. Research for Dynamic Modulus and Ing Ratio of Fly Ash Modified Loess[J]. Advanced Materials Research, 2013, 671/674: 94-100.
[12] ZHANG X D,REN K.Experimental Study on Dynamic Elastic Modulus and Critical Dynamic Stress of Cinder Improved Soil Subgrade[J]. Journal of Highway and Transportation Research and Development,2018,12(4):25-32.
[13] 柴芮祥,吴 恺,崔锦梅,等. 砂-复合固化淤泥路用强度特性试验研究[J]. 地基处理,2020,2(6):471-477.
[14] 庄心善,王俊翔,王 康,等.风化砂改良膨胀土的动力特性研究[J].岩土力学,2018,39(增刊2):149-156.
[15] 蔡袁强,赵 莉,曹志刚,等.不同频率循环荷载下公路路基粗粒填料长期动力特性试验研究[J].岩石力学与工程学报, 2017,36(5):1238-1246.
[16] 庄 涛. 磷尾矿改良膨胀土动力特性研究[D].武汉:湖北工业大学,2020.
[17] 姚义胜. 基于泡沬轻质土复合路基的半刚性路面结构优化及动力响应研究[D].济南:山东大学,2021.
[18] 陈瑞锋,闫炜炀,刘晓凤,等.不同含水率下赤泥改良土的动弹性模量及阻尼比研究[J].硅酸盐通报,2017,36(8):2810-2815.
[19] 王晶晶. 改良粉砂土路基动力特性研究[D].郑州:河南大学,2019.
[20] 刘靖宇,刘朝晖,王旭东,等.动态回弹性模量量滞回曲线形态参数研究[J].公路交通科技,2017,34(10):6-12.
基金
国家自然科学基金青年基金项目(51508283)