以ABAQUS为优化平台,基于变密度法,采用SIMP插值和RAMP插值2种模型对实体重力坝进行断面优化,结果表明应用SIMP插值模型优化的坝体断面出现大量空洞且迭代次数多为50;RAMP插值模型优化的坝体断面符合实体重力坝坝形且迭代次数较少,证明RAMP插值模型更适用于实体重力坝优化。进一步对最优模型的下游进行直线和曲线拟合,并进行静力分析,结果表明优化模型符合实体重力坝的各项应力和稳定性指标,且坝体下游设计为曲线形比直线形更能缓和应力集中区,在实际应用中更优。
Abstract
SIMP (solid isotropic microstructures with penalization) interpolation model and RAMP (rational approximation of material properties) interpolation model are employed to optimize the section of entity gravity dam. The optimization is carried out with ABAQUS as platform based on variable density method. Results suggest that by SIMP method, a large amount of cavities occur in the dam section, which requires many iterative times (mostly up to 50); whereas by RAMP model, the dam section conforms with the shape of the gravity dam and the number of iteration is small, indicating that the RAMP method is more suitable. Furthermore, the downstream of optimal model is fitted by straight line and curve, and static analysis is carried out. Results reveal that the optimized model accords with the stress and stability indexes of entity gravity dam. Curved downstream dam shape is better than straight line in practical application, because the former could ease the stress concentration zone better than straight line does.
关键词
实体重力坝 /
变密度法 /
SIMP插值模型 /
RAMP插值模型 /
拓扑优化
Key words
entity gravity dam /
variable density method /
SIMP interpolation model /
RAMP interpolation model /
topology optimization
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] MICHELL A G M. The Limits of Economy of Materials in Frame Structures[J]. Philosophical Magazine, 1904,8(47):589-597.
[2] BENDOSE M P. Optimization of Structural Topology,Shape and Material[M]. Berlin:Springer-Verlag , 1995.
[3] BENDSOE M P,KIJUCHI N. Generating Optimal Topologies in Structural Design Using a Homogenization Method[J]. Computer Methods in Applied Mechanics and Engineering,1988, 71(2): 197-224.
[4] BENDSOE M P. Optimal Shape Design As a Material Distribution Problem[J]. Structural Optimization,1989, 1(4): 193-202.
[5] XIE Y M, STEVEN G P. A Simple Evolutionary Procedure for Structural Optimization[J]. Computers & Structures,1993, 49(5): 885-896.
[6] SIGMUND O,PETERSSON J. Numerical Instabilities in Topology Optimization: A Survey on Procedures Dealing with Checkerboards,Mesh-dependencies and Local Minima[J]. Structural Optimization,1988,16(1):68-75.
[7] 孙 蓓. 连续体结构拓扑优化理论研究及其在水利工程中的应用[D].南京:河海大学,2005. (SUN Bei. Topology Optimum Design Theory of Continuum Structure and Its Application on Hydraulic Engineering[D]. Nanjing:Hohai University,2005.(in Chinese))
[8] 蔡 新,王德信. 模糊优化在坝工结构设计中的应用[J]. 河海大学学报(自然科学版),1995,23(6):10-15. (CAI Xin,WANG De-xin. Application of Fuzzy Optimization to Dam Structural Design[J]. Journal of Hohai University (Natural Science),1995,23(6):10-15. (in Chinese))
[9] 孙林松,王德信,许世刚. 进化策略在重力坝优化设计中的应用[J]. 河海大学学报(自然科学版),2000,28 (4):104-106.(SUN Lin-song, WANG De-xin, XU Shi-gang. Application of Evolutionary Strategies to Gravity Dam Optimization[J]. Journal of Hohai University (Natural Science),2000,28(4):104-106. (in Chinese))
[10]王金昌,陈页开. ABAQUS在土木工程中的应用[M]. 杭州:浙江大学出版社, 2006. (WANG Jin-chang,CHEN Ye-kai. Application of ABAQUS to Civil Engineering[M]. Hangzhou: Zhejiang University Press,2006. (in Chinese))
基金
西华大学水利水电工程校级重点学科经费资助(XZD0815-09)