院报 ›› 2013, Vol. 30 ›› Issue (7): 42-47.DOI: 10.3969/j.issn.1001-5485.2013.07.009

• 工程安全与灾害防治 • 上一篇    下一篇

基于外因响应的滑坡位移预测模型研究

许霄霄1,牛瑞卿1,叶润青2,王靖伟3   

  1. 1.中国地质大学 地球物理与空间信息学院, 武汉 430074;
    2.国土资源部
    三峡库区地质灾害防治工作指挥部,湖北 宜昌 443000;
    3.日照市国土资源局,山东 日照 276800
  • 收稿日期:2012-08-15 修回日期:2013-07-03 出版日期:2013-07-05 发布日期:2013-07-03
  • 作者简介:许霄霄(1988-),女,山东泰安人,硕士,主要从事遥感地质研究,(电话)13098821696(电子信箱)gisphh@126.com。
       通讯作者:牛瑞卿(1969-),男,河南南阳人,博士,教授,主要研究方向是天空地一体化地球观测信息融合与可视化、人类工程活动与岩土体变化遥感检测技术、时空多要素遥感信息定量化和反演,(电话)13377887265(电子信箱)rqniu@163.com。
  • 基金资助:
    国家“973”重点基础研究发展计划资助项目(2011CB710601);国家863计划资助项目(2012AA121303);国土资源部三峡库区三期地质灾害防治重大科学研究项目(SXKY3-6-2).

Displacement Prediction Model of Landslide Based on Trigger Factors Analysis

XU Xiao xiao1, NIU Rui qing1, YE Run qing2, WANG Jing wei3   

  1. 1. Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China;
    2.Headquarters of Geological Hazards Control in Three Gorges Reservoir Area, Ministry of Land and Resources, Yichang 443000, China;
    3. Bureau of Land Resources of Rizhao City in Shandong, Rizhao 276800, China
  • Received:2012-08-15 Revised:2013-07-03 Online:2013-07-05 Published:2013-07-03

摘要: 根据滑坡位移序列的单调性和非线性,将滑坡位移分为趋势项和偏离量,建立曲线回归-BP神经网络模型对滑坡位移进行动态预测。以三峡库区树坪滑坡为例,首先通过曲线回归提取滑坡位移趋势项;然后在选取滑坡位移动态变化影响因子的基础上,建立BP神经网络模型逼近位移偏离量;最后将趋势项和偏离量预测值叠加,得到滑坡位移预测值。结果表明,该模型可更好地反映影响因子动态变化对滑坡位移发展的关键作用,预测的平均相对误差为3.3%,有效地提高了预测结果的精度。

关键词: 滑坡, 位移预测, 影响因子, 曲线回归, 神经网络

Abstract: In view of the monotony and nonlinearity of landslide displacement time series, the landslide displacement is decomposed into trend item and deviation item which are dynamically predicted by curvilinear regression-BP neural network model. The Shuping landslide in the Three Gorges reservoir area is taken as a case study. In this method, the trend item of displacement time series is extracted by curvilinear regression model and the deviation of curvilinear regression model is approximated by BP neural network model based on factors which influence displacement fluctuations. Then the prediction values of trend displacement and deviation displacement are superposed to obtain the total displacement prediction value. The results indicate that the prediction model can reflect the key role of dynamic change of impact factors in the displacement development. The average relative error of the prediction is 3.3%, indicating that the model can effectively improve the precision of prediction results.

Key words: landslide, displacement prediction, impact factors, curvilinear regression, neural network

中图分类号: 

Baidu
map