离散Hopfield神经网络在湖库营养状态评价中的应用——以全国24个湖库富营养化等级评价为例

崔东文

raybet体育在线 院报 ›› 2012, Vol. 29 ›› Issue (7) : 10-14.

PDF(1745 KB)
PDF(1745 KB)
raybet体育在线 院报 ›› 2012, Vol. 29 ›› Issue (7) : 10-14. DOI: 10.3969/j.issn.1001-5485.2012.07.003
水资源与环境

离散Hopfield神经网络在湖库营养状态评价中的应用——以全国24个湖库富营养化等级评价为例

  • 崔东文
作者信息 +

Application of Discrete Hopfield Neural Network to the Assessment of Nutritional Status in Lakes and Reservoirs: A Case Study on 24 Lakes and Reservoirs in China

  • CUI Dong-wen
Author information +
文章历史 +

摘要

基于离散Hopfield神经网络联想记忆特性,建立了湖库富营养化等级综合评价模型,对全国24个湖库进行富营养化等级综合评价,并与文献投影寻踪法、评分指标法和LM-BP网络法的评价结果进行比较。结果表明:①离散Hopfield神经网络运用于湖库营养化等级评价具有简单、直观,容易实现等优点,其评价结果令人满意;②一般离散Hopfield神经网络并非适用于任何富营养化等级评价,当评价对象单项指标(因子)间存在较大差异时,对象将得不到正确的评价。

Abstract

Based on the associative memory of discrete Hopfield neural network, a model to  comprehensively assess the eutrophication level of lakes and reservoirs is established. Twenty-four lakes and reservoirs in China are evaluated through this model, and the results are compared with those of  projection pursuit method,  score index method, and LM-BP network method. The results show that discrete Hopfield neural network is simple, intuitive, and easy to implement, with only a few  iterations leading to satisfactory and objective results. However, not all eutrophication level assessments could be achieved through general discrete Hopfield neural network. When there is a big difference between each single index (factor), correct assessment could not be achieved.

关键词

富营养化评价 / 人工神经网络 / Hopfield网络 / 湖库

Key words

eutrophication assessment / ANN (artificial neural network) / Hopfield network / lakes and reservoirs

引用本文

导出引用
崔东文. 离散Hopfield神经网络在湖库营养状态评价中的应用——以全国24个湖库富营养化等级评价为例[J]. raybet体育在线 院报. 2012, 29(7): 10-14 https://doi.org/10.3969/j.issn.1001-5485.2012.07.003
CUI Dong-Wen. Application of Discrete Hopfield Neural Network to the Assessment of Nutritional Status in Lakes and Reservoirs: A Case Study on 24 Lakes and Reservoirs in China[J]. Journal of Changjiang River Scientific Research Institute. 2012, 29(7): 10-14 https://doi.org/10.3969/j.issn.1001-5485.2012.07.003
中图分类号: X524   

PDF(1745 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map