raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (7): 181-189.DOI: 10.11988/ckyyb.20240952

• 工程安全与灾害防治 • 上一篇    下一篇

基于深度学习方法的盾构掘进姿态预测

高苏1(), 陈城2()   

  1. 1 南通职业大学 建筑工程学院,江苏 南通 226007
    2 苏州城市学院 智能制造与智慧交通学院,江苏 苏州 215104
  • 收稿日期:2024-09-09 修回日期:2024-12-17 出版日期:2025-07-01 发布日期:2025-07-01
  • 通信作者:
    陈城(1993-),男,江苏盐城人,讲师,博士,主要从事智能建造研究。E-mail:
  • 作者简介:

    高苏(1979-),女,江苏徐州人,讲师,硕士,主要从事地下工程研究。E-mail:

  • 基金资助:
    国家自然科学基金青年基金项目(52108380); 南通市科技计划基金项目(JC22022069); 南通职业大学科研基金项目(23ZK05)

Prediction of Shield Tunneling Attitude Based on WM-CTA Method

GAO Su1(), CHEN Cheng2()   

  1. 1 School of Civil Engineering,Nantong Vocational University,Nantong 226007,China
    2 School of Intelligent Manufacturing and Smart Transportation, Suzhou City University, Suzhou 215104, China
  • Received:2024-09-09 Revised:2024-12-17 Published:2025-07-01 Online:2025-07-01

摘要:

为保证盾构掘进施工路线尽可能地吻合设计轴线,提高工程施工质量,基于深度学习技术,提出了一种新的盾构姿态WM-CTA预测模型。该模型主要由数据前处理模块(小波变换、最大信息系数)和预测模块(卷积神经网络和注意力机制)2个框架组成,选取沈阳某在建盾构隧道某区间的监测数据对模型的预测性能进行验证。首先利用试验对数据进行了降噪和相关性分析,然后分析了模型的预测性能和泛化能力。试验结果表明:经过小波变换处理后的监测曲线更平滑,减少了数据点之间发生突变的频率;通过相关性分析发现盾构施工参数对盾构姿态的影响大于土体参数,可对输入参数维度进行精简;与4种基准模型进行对比发现,提出的WM-CTA预测模型预测效果最好,且计算效率较高,同时还通过试验进一步验证了该模型具有较好的泛化能力,可为以后类似的工程提供参考。

关键词: 盾构掘进姿态, WM-CTA预测模型, 深度学习, 降噪, 相关性分析, 泛化能力

Abstract:

[Objective] The attitude of a shield machine is a critical parameter that significantly affects tunnel construction, directly determining construction safety and project quality. To ensure that shield tunneling closely aligns with the designed alignment and to improve engineering construction quality, this study proposes a novel shield attitude prediction model, called WM-CTA, based on deep learning technology. [Methods] The WM-CTA model primarily consists of two frameworks: a data preprocessing module (Wavelet Transform and Maximum Information Coefficient) and a prediction module (Convolutional Neural Network and Attention Mechanism). The preprocessing module, composed of Wavelet Transform (WT) and the Maximum Information Coefficient (MIC) algorithms, was used to perform noise reduction and parameter correlation analysis on the raw data, thereby generating enhanced inputs. The Convolutional Neural Network (CNN) integrated with a channel-wise attention mechanism explored parameter weight differences and extracted local data features. Subsequently, the Temporal Convolutional Network (TCN) was employed to capture temporal dependencies and dynamic variations in the data. Finally, the Attention Mechanism (AM) was applied to extract key temporal node information. The model’s prediction performance was validated using monitoring data from a section of a shield tunnel under construction in Shenyang. Experiments were conducted on data for noise reduction and correlation analysis, followed by analysis of the model’s prediction performance and generalization ability. [Results] Experimental results showed that the monitoring curves processed with wavelet transform had improved smoothness with reduced frequency of abrupt changes between data points. Correlation analysis indicated that shield construction parameters exerted greater influence on shield attitude than soil parameters, enabling dimensionality reduction of input parameters. Compared with four baseline models, the proposed WM-CTA model achieved minimum MAE and RMSE and maximum R2 value. [Conclusion] The experiments verify that the WM-CTA model delivers optimal prediction performance with high computational efficiency. Furthermore, the model exhibits strong generalization ability, providing valuable references for similar future engineering projects.

Key words: shield tunneling attitude, WM-CTA prediction model, deep learning, noise reduction, correlation analysis, generalization ability

中图分类号: 

Baidu
map