raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (5): 208-214.DOI: 10.11988/ckyyb.20240409
HAO Ze-jia1(), SHI Yu-qun2, CHENG Bo-chao2,3, HE Jin-ping2(
)
摘要:
传统的大坝变形预测模型难以反映效应量与环境量之间存在的复杂非线性关系,预测效果常常不够理想。考虑到LSTM模型具有较强的非线性学习能力,PSO模型具有优越的全局寻优能力,将PSO应用于LSTM超参数全局寻优之中,建立基于PSO-LSTM的大坝变形组合预测模型,既可以解决传统预测模型在描述非线性特性方面的不足,又可以提高LSTM超参数取值的合理性,并为提升大坝变形预测精度提供一种新思路。运用所提出的方法,以某混凝土重力坝和某混凝土拱坝实测水平位移为例,进行了实例研究。研究结果表明,所提出的PSO-LSTM组合模型在模型的RMSE、MAE和R2等指标方面均优于单纯的LSTM模型和传统的监测统计模型,在3种预测模型中,PSO-LSTM组合模型的预测效果更优。
中图分类号: