raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (7): 52-59.DOI: 10.11988/ckyyb.20240319

• 水资源 • 上一篇    下一篇

缺资料地区可解释性混合机器学习模型中长期径流预报

由宇军1(), 白云岗2, 卢震林2(), 张江辉2, 曹彪2, 李文忠3, 余其鹰3   

  1. 1 陕西省水文水资源勘测中心,西安 710068
    2 新疆水利水电科学研究院,乌鲁木齐 830049
    3 郑州大学 水利与交通学院,郑州 450001
  • 收稿日期:2024-04-02 修回日期:2024-07-08 出版日期:2025-07-01 发布日期:2025-07-01
  • 通信作者:
    卢震林(1980-),男,甘肃民勤人,正高级工程师,硕士,研究方向为水文与水资源。E-mail:
  • 作者简介:

    由宇军(1974-),男,陕西蒲城人,高级工程师,主要从事水文勘测、水文情报预报等工作。E-mail:

  • 基金资助:
    新疆维吾尔自治区重点研发计划项目(2023B02044-3); 新疆“天山英才-科技创新领军人才”项目(2022TSYCLJ0069)

Medium- Long-Term Runoff Forecasting Using Interpretable Hybrid Machine Learning Model for Data-Scarce Regions

YOU Yu-jun1(), BAI Yun-gang2, LU Zhen-lin2(), ZHANG Jiang-hui2, CAO Biao2, LI Wen-zhong3, YU Qi-ying3   

  1. 1 Shaanxi Hydrology and Water Resources Survey Center, Xi’an 710068, China
    2 Xinjiang Research Institute of Water Resources and Hydropower,Urumqi 830049,China
    3 School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou 450001, China
  • Received:2024-04-02 Revised:2024-07-08 Published:2025-07-01 Online:2025-07-01

摘要:

在无资料地区气象、水文等观测资料缺乏,影响径流预报的准确性,直接影响水文预报和防汛抗旱工作的开展。分析无资料地区现有的降水、气温和径流数据在中长期预报中的适用性,进而实现径流预报非常重要。分别采用卷积神经网络算法(CNN)、双向门控循环神经网络(BiGRU)、注意力机制(Attention)和优化粒子群算法(IPSO)构建CNN-BiGRU-Attention、IPSO-CNN-BiGRU-Attention组合模型,再与门控循环单元模型(GRU)和ABCD水量平衡模型进行对比分析,并在玉龙喀什河进行综合评估,并结合SHAP可解释性机器学习方法探究最优模型中输入特征对径流影响的贡献程度。结果表明:加入降水和气温的组合模型IPSO-CNN-BiGRU-Attention预测精度整体优于CNN-BiGRU-Attention、GRU模型,与实际值能够较好地吻合;随着预见期的增加,提出的组合模型在验证期内均方根误差(RMSE)、平均绝对误差(MAE)、平均绝对百分误差(MAPE)、纳什效率系数(NSE)分别为2.11、1.32 m3/s、73.76%和0.94,并且在前3个月预报精度最高。该方法在缺资料地区月径流预报中具有较好的效果。

关键词: 径流预报, 缺资料地区, SHAP可解释性机器学习方法, 组合模型IPSO-CNN-BiGRU-Attention, 预测精度

Abstract:

[Objectives] This study aims to analyze the applicability of existing precipitation, temperature, and runoff data in data-scarce regions, and to develop and evaluate a deep learning hybrid model driven by multi-source information for improving the accuracy of monthly runoff forecasting. [Methods] Based on historical precipitation, temperature, and runoff sequences from the Yulongkashi River, a Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (CNN-BiGRU-Attention) model was developed. An Improved Particle Swarm Optimization (IPSO) algorithm was used to optimize this model, forming the IPSO-CNN-BiGRU-Attention hybrid model. The performance of this model was compared with that of the Gated Recurrent Unit (GRU) model and the ABCD water balance model. [Results] The IPSO-CNN-BiGRU-Attention model that incorporated precipitation and temperature data overall outperformed the CNN-BiGRU-Attention and GRU models, showing better agreement with the observed values. As the predication period increased, the proposed model achieved a root mean square error (RMSE) of 2.11 m3/s, a mean absolute error (MAE) of 1.32 m3/s, a mean absolute percentage error (MAPE) of 73.76%, and a Nash-Sutcliffe efficiency (NSE) coefficient of 0.94. The highest forecast accuracy was observed in the first three months. [Conclusions] The IPSO-CNN-BiGRU-Attention model effectively integrates precipitation, temperature, and runoff information, significantly enhancing the accuracy of monthly runoff forecasts in data-scarce regions. The model demonstrates robust performance across different forecast horizons, particularly suitable for short-term predictions of 1-3 months. This approach offers a practical and reliable tool for hydrological forecasting and flood control/drought management in data-scarce basins.

Key words: runoff forecasting, data-scarce regions, SHAP interpretable machine learning analysis, IPSO-CNN-BiGRU-Attention model, prediction accuracy

中图分类号: 

Baidu
map