院报 ›› 2024, Vol. 41 ›› Issue (5): 35-44.DOI: 10.11988/ckyyb.20221671

• 水资源 • 上一篇    下一篇

“分解-校正-集成”模式下基于深度信念网络模型的径流预测

钱玉霞1,2, 陈伏龙1,2, 何朝飞1,2, 龙爱华1,3, 孙怀卫1,4, 吕廷波1,2   

  1. 1.石河子大学 水利建筑工程学院,新疆 石河子 832000;
    2.寒旱区生态水利工程兵团重点实验室,新疆 石河子 832000;
    3.中国水利水电科学研究院 流域水循环模拟与调控国家重点实验室,北京 100038;
    4.华中科技大学 土木与水利工程学院,武汉 430074
  • 收稿日期:2022-12-14 修回日期:2023-03-21 出版日期:2024-05-01 发布日期:2024-05-07
  • 通讯作者: 陈伏龙(1978-),男,湖南东安人,教授,博士,主要从事水文学及水资源问题研究。E-mail:cfl103@shzu.edu.cn
  • 作者简介:钱玉霞(1997-),女,甘肃民乐人,硕士研究生,主要从事水文学及水资源问题研究。E-mail:2196383778@qq.com
  • 基金资助:
    国家自然科学基金项目(52169005,51769029);南疆重点产业创新发展支撑计划项目(2022DB024)

Runoff Prediction Based on Deep Belief Network in Decomposition-Correction-Integration Mode

QIAN Yu-xia1,2, CHEN Fu-long1,2, HE Chao-fei1,2, LONG Ai-hua1,3, SUN Huai-wei1,4, LÜ Ting-bo1,2   

  1. 1. College of Water Conservancy & Architectural Engineering, Shihezi University, Shihezi 832000, China;
    2. Key Laboratory of Xinjiang Production and Construction Corps. on Eco-hydraulic Engineering in Cold and Arid Regions, Shihezi 832000, China;
    3. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;
    4. School of Civil Engineering and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
  • Received:2022-12-14 Revised:2023-03-21 Online:2024-05-01 Published:2024-05-07

摘要: 精准的短期径流预测可为流域内水资源规划、防洪调度及抗旱减灾工作提供重要的科学依据。为减小模型的系统误差,提高径流预测精度,在“分解-集成”模式的基础上提出“分解-校正-集成”框架,构建EEMD-DBN-EnKF、VMD-DBN-EnKF模型。利用集合卡尔曼滤波数据同化算法对偏离实测径流过大的分量校正以降低分解子序列在预测中产生的系统误差,并与未修正的EEMD-DBN、VMD-DBN模型及单一DBN模型进行了对比分析。结果表明:基于模态分解的组合模型较单一模型RMSE减小了至少23%,NSE与R2增加了21%以上;基于径流分量校正的组合模型相较于模态分解的组合模型各评价系数有所提升,其中VMD-DBN-EnKF预测模型误差最小,效果最优,NSE与R2达到0.89以上,其次依次为EEMD-DBN-EnKF>VMD-DBN>EEMD-DBN。综上“分解-校正-集成”模式的预测框架在玛纳斯河流域具有良好的适用性,可为玛纳斯河径流短期预报提供技术支持。

关键词: 模态分解, 深度信念网络, 集合卡尔曼滤波, 径流预测, 组合模型

Abstract: Accurate short-term runoff prediction can provide important scientific basis for water resources planning, flood control and drought relief in river basin. To mitigate systematic errors and enhance runoff prediction accuracy of models, we propose the decomposition-correction-integration framework based on the decomposition-integration model. Within this framework, we construct the EEMD-DBN-EnKF and VMD-DBN-EnKF models. Leveraging the Ensemble Kalman Filter data assimilation algorithm, we correct components deviating significantly from measured runoff to alleviate systematic errors introduced by the decomposition process in prediction. Comparative analysis is conducted against the unmodified EEMD-DBN, VMD-DBN, and single DBN models. Results demonstrate that the combination model based on modal decomposition reduces RMSE by a minimum of 23% compared to individual models, while NSE and R2 increase by over 21%. Notably, the runoff component-corrected combined model exhibits improved evaluation metrics relative to the modal decomposition-based model. Among these models, the VMD-DBN-EnKF prediction model exhibits the least error and highest effectiveness, with NSE and R2 exceeding 0.89, followed by EEMD-DBN-EnKF, VMD-DBN, and EEMD-DBN in descending order. In conclusion, the “decomposition-correction-integration” prediction framework demonstrates robust applicability in the Manas River Basin, offering valuable technical support for short-term runoff forecasts.

Key words: modal decomposition, deep belief network, ensemble Kalman filter, runoff prediction, combination model

中图分类号: 

Baidu
map