院报 ›› 2024, Vol. 41 ›› Issue (5): 35-44.DOI: 10.11988/ckyyb.20221671
钱玉霞1,2, 陈伏龙1,2, 何朝飞1,2, 龙爱华1,3, 孙怀卫1,4, 吕廷波1,2
QIAN Yu-xia1,2, CHEN Fu-long1,2, HE Chao-fei1,2, LONG Ai-hua1,3, SUN Huai-wei1,4, LÜ Ting-bo1,2
摘要: 精准的短期径流预测可为流域内水资源规划、防洪调度及抗旱减灾工作提供重要的科学依据。为减小模型的系统误差,提高径流预测精度,在“分解-集成”模式的基础上提出“分解-校正-集成”框架,构建EEMD-DBN-EnKF、VMD-DBN-EnKF模型。利用集合卡尔曼滤波数据同化算法对偏离实测径流过大的分量校正以降低分解子序列在预测中产生的系统误差,并与未修正的EEMD-DBN、VMD-DBN模型及单一DBN模型进行了对比分析。结果表明:基于模态分解的组合模型较单一模型RMSE减小了至少23%,NSE与R2增加了21%以上;基于径流分量校正的组合模型相较于模态分解的组合模型各评价系数有所提升,其中VMD-DBN-EnKF预测模型误差最小,效果最优,NSE与R2达到0.89以上,其次依次为EEMD-DBN-EnKF>VMD-DBN>EEMD-DBN。综上“分解-校正-集成”模式的预测框架在玛纳斯河流域具有良好的适用性,可为玛纳斯河径流短期预报提供技术支持。
中图分类号: