院报 ›› 2023, Vol. 40 ›› Issue (9): 24-31.DOI: 10.11988/ckyyb.20220306

• 水环境与水生态 • 上一篇    下一篇

微电流电解产H2O2抑制铜绿微囊藻生长研究

张雨婷1,2, 林莉1,2, 贾迪1,2, 董磊1,2, 潘雄1,2, 刘敏1,2, 赵良元1,2   

  1. 1. 流域水环境研究所,武汉 430010;
    2. 流域水资源与生态环境科学湖北省重点实验室,武汉 430010
  • 收稿日期:2022-03-27 修回日期:2022-07-01 出版日期:2023-09-01 发布日期:2023-09-01
  • 通讯作者: 林 莉(1983-),女,湖北咸宁人,正高级工程师,博士,主要从事流域水环境保护研究。E-mail: linli1229@hotmail.com
  • 作者简介:张雨婷(1995-),女,湖北襄阳人,工程师,硕士,主要从事流域水环境治理和水资源保护研究。E-mail: zyuting0806@163.com
  • 基金资助:
    武汉市应用基础前沿项目(2020020601012285);中央级公益性科研院所基本科研业务费项目(CKSF2021480/SH, CKSF2017062/SH)

Inhibiting the Growth of Microcystis aeruginosa by H2O2 Generated in the Electrolysis Process by Low-Amperage Electric Current

ZHANG Yu-ting1,2, LIN Li1,2, JIA Di1,2, DONG Lei1,2, PAN Xiong1,2, LIU Min1,2, ZHAO Liang-yuan1,2   

  1. 1. Basin Water Environment Department, Changjiang River Scientific Research Institute, Wuhan 430010, China;
    2. Hubei Provincial Key Laboratory of Basin Water Resources and Eco-environmental Sciences, Changjiang River Scientific Research Institute, Wuhan 430010, China
  • Received:2022-03-27 Revised:2022-07-01 Online:2023-09-01 Published:2023-09-01

摘要: 为了探究微电流电解过程对铜绿微囊藻生长的影响,以铂钛作为阳极,碳黑聚四氟乙烯(C/PTFE)气体扩散电极为阴极,在微电流电解体系中可产生对铜绿微囊藻生长具有选择性抑制作用的活性物质H2O2。探究不同电解时间、电流密度和气体流量对藻细胞生长的影响,结果表明:微电流电解的最佳条件为100 mL细胞密度为5×105个/mL 的藻液在10 mA/cm2的电流密度下以0.4 L/min的气体流量电解60 min。藻细胞光密度OD680从0.035降至0.003,表明藻细胞的生长完全受到抑制。测定电解处理前后藻细胞的叶绿素荧光参数Fv/FmY(Ⅱ)、Y(NO)等可知,电解处理后藻细胞的光合作用机制已遭到完全破坏。测定电解过程中产生H2O2的质量浓度为79 mg/L,并且经过6次循环实验后,C/PTFE气体扩散电极产生H2O2质量浓度仍为首次使用产生H2O2质量浓度的66%(52 mg/L),说明C/PTFE气体扩散电极的稳定性良好,具有较大的应用前景。该研究可为微电流电解抑制蓝藻水华提供新手段。

关键词: 气体扩散电极, 微电流, 过氧化氢, 铜绿微囊藻, 抑制作用

Abstract: Platinum titanium served as the anode, while a carbon black polytetrafluoroethylene (C/PTFE) gas diffusion electrode was utilized as the cathode in order to facilitate the production of H2O2 through low-amperage electrolysis, with the aim of inhibiting the growth of Microcystis aeruginosa. Through a series of experimental investigations involving varying electrolysis time, current density, and gas flow, the optimal conditions for inhibiting Microcystis aeruginosa were determined. Specifically, the optimal configuration involved the electrolysis of 100 mL of 5×105 cells/mL algae solution at a current density of 10 mA/cm2 and a gas flow rate of 0.4 L/min for a duration of 60 minutes. Following electrolysis, the optical density (OD680) of the algae cells decreased from 0.035 to 0.003, indicating the complete inhibition of algae cell growth. Additionally, the measurement of chlorophyll fluorescence parameters, such as Fv/Fm, Y(Ⅱ), and Y(NO), demonstrated the substantial disruption to the photosynthetic mechanism of the algae, further indicating the complete decay of the algae population. The concentration of H2O2 generated during electrolysis was determined to be 79 mg/L. Furthermore, even after six cycles of reuse, the C/PTFE cathode maintained 66% (52 mg/L) of the initial H2O2 concentration, highlighting the excellent stability and promising application potential of the C/PTFE electrode. This study presents a novel approach to effectively inhibit cyanobacterial blooms through low-amperage electrolysis, offering a new avenue for remediation.

Key words: gas diffusion electrode, low-amperage electric current, hydrogen peroxide, microcystis aeruginosa, inhibiting effect

中图分类号: 

Baidu
map