院报 ›› 2021, Vol. 38 ›› Issue (12): 137-145.DOI: 10.11988/ckyyb.20200839

• 岩土工程 • 上一篇    下一篇

倾斜挡墙黏性填土非极限主动土压力计算

陈建旭, 钱波, 郭宁, 余明东, 庄锦亮   

  1. 西昌学院 土木与水利工程学院,四川 西昌 615013
  • 收稿日期:2020-08-17 修回日期:2020-11-02 出版日期:2021-12-01 发布日期:2021-12-15
  • 通讯作者: 钱 波 (1969-),男,湖北大悟人,教授,主要从事水利水电工程施工、设计的科研和教学工作。E-mail:qbydf@126.com
  • 作者简介:陈建旭(1993- ),男,四川达川人,讲师,硕士,主要从事岩土方面的科研及教学工作。E-mail:823934635@qq.com
  • 基金资助:
    四川省科技厅重点项目(2018GZ0499);凉山州学术和技术带头人培养资金资助项目(ZRS201905).

Calculation of Non-limit Active Earth Pressure on Cohesive Backfill of Inclined Retaining Wall

CHEN Jian-xu, QIAN Bo, GUO Ning, YU Ming-dong, ZHUANG Jin-liang   

  1. School of Civil and Hydraulic Engineering, Xichang University, Xichang 615013, China
  • Received:2020-08-17 Revised:2020-11-02 Online:2021-12-01 Published:2021-12-15

摘要: 朗肯理论局限于求解墙背铅直且光滑,墙后填土位移达到极限状态的土压力,因而开展倾斜粗糙墙背的非极限主动土压力的理论研究具有重大意义。将墙后黏性填土滑裂体分为弹性区和塑性区两部分,并基于非极限状态下的虚功原理,建立了能量守恒方程,推导了张拉裂缝深度及潜在滑裂面的解析式。在此基础上,考虑了土拱效应,并通过摩尔应力圆,得到了水平应力、竖向应力的表达式,由水平层分析法建立受力平衡方程,推求了倾斜挡墙黏性填土非极限主动土压力分布、合力大小、合力作用点深度的理论表达式。当满足朗肯假设时,朗肯裂缝深度、滑裂面倾角、合力值为其特解。由两例模型试验验证了公式的合理性。研究表明:张拉裂缝深度与填土内摩擦角φm、填土黏聚力cm、墙土摩擦角δm、墙土黏聚力cwm、墙体位移比η呈正相关,与墙背倾角ε呈负相关。潜在滑裂面倾角大小与cm无关,随εφmη的增大而增大,而δmcm对其影响则相反。墙背光滑时,土压力近似呈线性分布,合力作用点深度与朗肯解接近;墙背粗糙时,土压力则呈凸曲线分布,上部本文解大于朗肯解,下部反之,其大小随ηφmcm的增加而减小,峰值随ε的减小而有所提高,cwm对其影响甚微,合力作用点深度仅在俯斜式挡墙发生较大位移时才可能低于朗肯解。

关键词: 倾斜挡墙, 黏性填土, 虚功原理, 裂缝深度, 土拱效应, 非极限主动土压力

Abstract: Rankine’s theory is limited to solving the earth pressure where the wall back is vertical and smooth and the displacement of the fill behind the wall reaches the limit state. It is of great significance to carry out theoretical research for non-limit active earth pressure on inclined rough wall backs. The viscous fill slipper behind the wall is divided into two parts, the elastic region and the plastic region. Based on the principle of virtual work in the non-limit state, an energy conservation equation is established, and the formulas for tension crack depth and potential slip surface are derived. On this basis, the expressions for horizontal stress and vertical stress are obtained through the Mohr stress circle in consideration of the soil arch effect. Moreover, the theoretical expressions for the non-limiting active earth pressure distribution,the magnitude of the resultant force,and the position of the resultant force’s action point are derived by establishing the force balance equation using the horizontal layer analysis method. When the Rankine’s hypothesis is met, the Rankine’s crack depth, slip surface inclination, and resultant force values are special solutions. The validity of the formulas is verified by two model tests. The research manifests that the tensile crack depth is positively correlated with the internal friction angle φm of the fill, the cohesion cm of the fill, the wall-soil friction angle δm, the wall-soil cohesion cwm, and the wall displacement ratio η, while negatively correlated with wall back inclination ε. The inclination angle of the potential slip surface has nothing to do with cm, but increases with the growth of ε, φm, and η, while the influence of δm and cm is opposite. When the wall back is smooth, the earth pressure is approximately linearly distributed, and the position of the resultant force is close to that obtained from the Rankine’s solution; when the wall back is rough, the earth pressure distributes in a convex curve, with the upper part larger than the Rankine’s solution, and the lower part smaller than the Rankine’s solution. Earth pressure declines with the increase of η, φm, and cm, and its peak value increases with the shrinkage of ε, but is rarely affected by cwm. The position of the resultant force acting point can only be lower than the Rankine’s solution in the presence of large displacement of the inclined retaining wall.

Key words: inclined retaining wall, cohesive backfill, principle of virtual work, crack depth, soil arching, non-limit active earth pressure

中图分类号: 

Baidu
map