raybet体育在线 院报 ›› 2020, Vol. 37 ›› Issue (12): 72-80.DOI: 10.11988/ckyyb.20191127

• 水力学 • 上一篇    下一篇

折板型竖井结构设计参数优化

杨庆华1, 尧远1, 杨乾1, 赵子成2, 林宏2, 牟祎3, 姚锦涛1   

  1. 1.西南交通大学 土木工程学院,成都 610031;
    2.中铁二院工程集团有限责任公司,成都 610031;
    3.林同棪国际工程咨询(中国)有限公司,重庆 401121
  • 收稿日期:2019-09-16 修回日期:2019-11-29 出版日期:2020-12-01 发布日期:2020-12-01
  • 作者简介:杨庆华(1976-),男,四川渠县人,副教授,博士,主要从事海绵城市建设及市政流体力学研究。E-mail:qhyang@home.swjtu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51478403);中铁二院工程集团有限责任公司科研项目(KYY2019050(19-22))

Optimizing Structural Design Parameters of Baffle-drop Shaft

YANG Qing-hua1, YAO Yuan1, YANG Qian1, ZHAO Zi-cheng2, LIN Hong2, MOU Yi3, YAO Jin-tao1   

  1. 1. School of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China;
    2. China Railway Eryuan Engineering Group Co., Ltd., Chengdu 610031,China;
    3. T. Y. Lin International Engineering Consulting (China) Co., Ltd., Chongqing 401121,China
  • Received:2019-09-16 Revised:2019-11-29 Published:2020-12-01 Online:2020-12-01

摘要: 折板型竖井是城市深隧排水系统中一种消能效果明显的水工结构,竖井的结构参数对其泄流量和消能率有重要影响。通过开展物理模型试验和基于Realizable k-ε湍流模型和VOF法的数值模拟,分析不同折板间距和折板倾角的竖井水流流型、最大泄流量、出口流速及消能率。研究结果表明:折板型竖井中基本水流流型有3种,分别为撞壁受限流、临界流和自由跌流;一定范围内增大折板倾角有利于水流流型从撞壁受限流向自由跌流转变,因此,在折板竖井设计中应使折板有适当的角度;竖井的最大泄流量随着折板间距和折板倾角的增大而增大,消能率随泄流量的增大而减小;从竖井的泄流能力和消能效果两方面考虑,当竖井直径为10 m时,折板间距4.85 m,折板倾角为9°~11°的竖井体型为最优。研究成果可为深隧排水系统的设计提供技术支撑。

关键词: 折板型竖井, 模型试验, 数值模拟, 结构参数优化, 深隧排水系统

Abstract: Baffle-drop shaft is an effective energy dissipation structure in urban deep tunnel drainage system. Different structural parameters of the shaft result in large differences in flow capacity and energy dissipation rate. Through experimental study and numerical simulation (using realizable k-ε turbulence model and volume of fluid(VOF) method), the flow pattern, the maximum flow capacity, the outlet flow velocity and the energy dissipation rate of the shaft with different baffle spacings and baffle angles are analyzed. Results demonstrate that the basic flow patterns in the baffle-drop shaft can be summarized into three categories: wall-limited flow, critical flow, and free-fall flow. Increasing the baffle angle is conducive to the transition of flow pattern from wall-limited flow to free-fall flow. Therefore, a proper baffle angle is critical to the design of the shaft. The maximum discharge of the shaft increases as the baffle spacing and baffle angle increase. The energy dissipation rate of the shaft declines with the increase of inflow. Considering both maximum flow capacity and energy dissipation, the shaft performs the best when shaft diameter is 10 m with a baffle spacing of 4.85 m and baffle angles from 9° to 11°. The research finding offers technical support for the design of deep tunnel drainage systems.

Key words: baffle-drop shaft, model test, numerical simulation, optimization of structural parameters, deep tunnel drainage system

中图分类号: 

Baidu
map