院报 ›› 2018, Vol. 35 ›› Issue (9): 17-22.DOI: 10.11988/ckyyb.20170239

• 水资源与环境 • 上一篇    下一篇

渭河下游垂向潜流通量动态特征研究

霍艾迪1, 韦红1, 管文轲2, 侯志强3, 郑小路1, 杜伟宏1, 温轶然1, 李聪怡1   

  1. 1.长安大学 环境科学与工程学院, 西安 710054;
    2. 新疆林业科学院,乌鲁木齐 830002;
    3. 潍坊市水文局,山东 潍坊 261000
  • 收稿日期:2017-03-08 出版日期:2018-09-01 发布日期:2018-09-18
  • 通讯作者: 管文轲(1972-),男,新疆吉木萨尔人,高级工程师,硕士,从事荒漠化防治与林业生态研究和推广。E-mail:gwk1125@sina.com
  • 作者简介:霍艾迪(1971-),男,陕西户县人,副教授,博士,主要从事河流与地下水相互作用研究。E-mail:huoaidi@163.com   
  • 基金资助:
    国家自然科学基金项目(51679200, 41790444 );陕西省重点科技创新团队项目(2014KCT-27); 教育部科技发展中心产教联合基金课题(2017B00022);陕西高等教育学会基金项目(XGH17049)

Dynamic Characteristics of Vertical Hyporheic Flux in the Downstream of Weihe River, China

HUO Ai-di1, WEI Hong1, GUAN Wen-ke2 , HOU Zhi-qiang3, ZHENG Xiao-lu1,
DU Wei-hong 1, WEN Yi-ran1, LI Cong-yi1   

  1. 1.School of Environmental Science and Engineering, Chang’an University, Xi’an 710054, China;
    2.Xinjiang Academy of Forestry, Urumqi 830002, China;
    3.Hydrology Survey Bureau of Weifang City,Weifang 261000, China
  • Received:2017-03-08 Online:2018-09-01 Published:2018-09-18

摘要: 潜流交换控制着潜流带内水量的变化及各种物质(氧气、有机质)的滞留时间,对地下水的水量和水质变化具有重要的影响。精确计算潜流带内的潜流通量及其动态变化特征,对河流的综合治理及生态恢复具有十分重要的意义。采用热量运移解析模型求解潜流通量,利用温度示踪技术,重点研究潜流交换过程的空间非均质特征和动态变化特征;以渭河下游草滩段为研究区,进行河床浅层沉积物潜流通量的计算。结果表明:监测时段内研究区地下水流为河水补给地下水,河道内不同位置的浅层潜流带内呈现出不同的潜流通量动态特征,其变化范围在0.873~8.900 μm/s之间,潜流带厚度约为0.75 m,呈现比较复杂的动态变化特征。监测时段内各深度间潜流通量总体变化趋势为上升趋势,在垂向分布上存在差异,而且这种差异随时间变化。温度示踪方法简单易行,在潜流通量的计算中具有较好的准确性,适用于潜流带内水动力交换量的精确计算。

关键词: 潜流带, 潜流通量, 热量, 示踪剂, 渭河

Abstract: Hyporheic exchange has significant impact on the changes of water quantity in the hyporheic zone and residence time of various substances (oxygen and organic matters). Accurate calculation of hyporheic exchange flux and its dynamic change is of crucial importance for the integrated management and ecological restoration of rivers. In the present paper, the hyporheic flux in the hyporheic zone of the Caotan section of Weihe River is calculated by using heat transfer model as a case study. The spatial heterogeneity and dynamic change of hyporheic exchange are examined through temperature tracing. Results show that in the monitoring period, groundwater in the study area was recharged by river flow. Hyporheic flux varied in a range of 8.73×10-7-8.90×10-6m/s in shallow hyporheic zones of about 0.75 m thick at different locations, displaying complex dynamic feature. In the monitoring period, the overall trend of hyporheic flux at different depths was increasing, yet with some differences in vertical distribution varying with time. The results prove that temperature tracing method is simple and accurate in the calculation of hyporheic flux, and is suitable for the calculation of hydrodynamic exchange capacity in hyporheic zone.

Key words: hyporheic zone, hyporheic flux, heat, tracer, Weihe River

中图分类号: 

Baidu
map