%0 Journal Article %A ZHOU Ting %A QI Wang-yue %A JIN Ju-liang %T Advances in Structural Analysis Methods for Optimal Operation of Reservoirs System %D 2020 %R 10.11988/ckyyb.20191117 %J Journal of Yangtze River Scientific Research Institute %P 14-21 %V 37 %N 12 %X With the expansion of scale and the complication of structural functions of reservoir groups, structural analysis has been playing an increasingly important role in the optimizing dispatching of reservoirs. The aim of this study is to identify the applicability, advantages and disadvantages of different structural analysis methods and to provide an efficient structural analysis method for reservoir groups with complicated structure. On the basis of research achievements in the past six decades, we reviewed the advances in five structure analysis methods, namely, sequential simulation method, water supply discriminant method, equilibrium with utility theory, aggregation-decomposition method, and hydraulic connection method. Sequential simulation method is logical, intuitive and universal, while water supply discriminant method could quickly sort the order of reservoirs storage and supply in power generation operation. Both are suitable for cascaded reservoirs. Equilibrium with utility theory, which is based on firm equilibrium theory in microeconomics, has a solid theoretical foundation and is suitable for parallel reservoirs with relatively independent hydraulic relations. Aggregation-decomposition method involves two forms: reservoirs’ joint operation chart and large-scale system decomposition and coordination, which can be used in combination with cascaded and parallel structural analysis methods and is suitable for large-scale hybrid structural reservoir group. Hydraulic connection method describes the relationship pairwise in reservoir group by adopting matrix and is not limited by the structure of reservoir group, thus is applicable to any structural reservoir group. Structural analysis method is critical to optimize and efficiently solve reservoirs optimal operation problem, but it also needs to cooperate with other links.We suggested that further research should be carried out on the utilization of runoff forecast information, the coupling of statistical model with physical background and the refined operation of reservoir group of hybrid structures. %U http://ckyyb.crsri.cn/EN/10.11988/ckyyb.20191117