%0 Journal Article %A 余周 %A 姜涛 %A 范鹏辉 %A 牛超群 %A 陈兵 %T 基于EMD-DELM-LSTM组合模型的湖泊水位多时间尺度预测 %D 2024 %R 10.11988/ckyyb.20230032 %J 院报 %P 28-35 %V 41 %N 6 %X 针对水位时间序列具有线性与非线性混合、不确定性高等特点带来的预测困难问题,提出了一种基于经验模态分解(EMD)、长短时记忆网络(LSTM)和深度极限学习机(DELM)的EMD-DELM-LSTM组合模型,其中DELM和LSTM采用并联结构预测,并与EMD串联连接。首先使用EMD将原始信号分解为若干个具有单一特征的本征模态函数(IMFs),再将IMFs分类重组为高、中、低频信号后输入DELM-LSTM并联结构中进行预测并重构。以广州某大学重要湖泊为例验证模型的有效性,结果表明,与EMD-LSTM、EMD-DELM、LSTM、DELM和BiLSTM模型相比,本模型在不同时间尺度下的预测性能均有显著提升,其中40 min时间尺度下的预测性能提升效果最为明显,分别较对比模型提升43.08%、22.92%、45.79%、30.92%和47.31%。可见,本模型对于不同时间尺度的水位预测具有良好的可靠性和稳定性。 %U http://ckyyb.crsri.cn/CN/10.11988/ckyyb.20230032