%0 Journal Article %A 李龙起 %A 王梦云 %A 赵皓璆 %A 王滔 %A 赵瑞志 %T 基于CEEMDAN-BA-SVR-Adaboost模型的白水河滑坡位移预测 %D 2021 %R 10.11988/ckyyb.20200389 %J 院报 %P 52-59 %V 38 %N 6 %X 为提高白水河滑坡位移预测精度,提出一种新的预测模型,即基于自适应噪声完全集合经验模态分解(CEEMDAN)-蝙蝠算法(BA)-支持向量回归机(SVR)-自适应提升算法(Adaboost)的模型。以该滑坡为研究对象,利用CEEMDAN将滑坡位移分解为趋势项以及由IMF分项构成的波动项。首先采用BP神经网络对趋势项位移进行预测,随后利用CEEMDAN-BA-SVR-Adaboost模型对波动项进行预测,并将预测结果与CEEMDAN-PSO-SVR-Adaboost、CEEMDAN-BA-BP-Adaboost、CEEMADAN-BA-SVR、BA-SVR-Adaboost模型预测结果进行对比分析,验证本模型在位移预测方面的优越性。此外,利用CEEMDAN-BA-SVR-Adaboost模型对ZG118波动项位移进行预测,同时计算ZG93监测点最终累计预测位移。结果表明,对白水河滑坡位移进行预测时,CEEMDAN-BA-SVR-Adaboost模型具有较高的准确性和适用性。 %U http://ckyyb.crsri.cn/CN/10.11988/ckyyb.20200389