基于凸集比例因子和WOA-Kriging模型的重力坝非概率可靠性分析

刘要来, 王堡生, 周红波, 赵二峰, 李章寅

raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (3) : 164-170.

PDF(7565 KB)
PDF(7565 KB)
raybet体育在线 院报 ›› 2025, Vol. 42 ›› Issue (3) : 164-170. DOI: 10.11988/ckyyb.20231174
水工结构与材料

基于凸集比例因子和WOA-Kriging模型的重力坝非概率可靠性分析

作者信息 +

Non-probabilistic Reliability Analysis of Gravity Dam Based on Convex Set Scale Factor and the WOA-Kriging Model

Author information +
文章历史 +

摘要

为了实现在统计资料匮乏时也能进行重力坝的可靠性分析,构建了仅需要不确定参数上下限的重力坝非概率可靠度评估方法。通过内切椭球模型描述了不确定参数的相关关系,引入比例因子将非概率可靠度计算模型转化为有约束的优化问题,利用Kriging模型对于高度非线性函数的适用性拟合重力坝单元功能函数,在此基础上,通过鲸鱼优化算法进行可靠度的寻优。经过实例分析计算,非概率可靠度计算方法与规范法得出的坝段的抗滑稳定均处于可靠状态,两种方法的结论相同,这验证了基于凸集比例因子和WOA-Kriging模型的重力坝非概率可靠度计算方法可以有效分析重力坝的可靠性。

Abstract

To achieve reliable analysis of gravity dams with limited statistical data, a non-probabilistic reliability assessment method was developed. This method requires only the upper and lower bounds of uncertain parameters. The correlated relationship of these parameters was described using an inscribed ellipsoid model. By introducing a scaling factor, the non-probabilistic reliability calculation model was transformed into a constrained optimization problem. The Kriging model, known for its effectiveness in fitting highly nonlinear functions, was employed to model the functional behavior of gravity dam elements. Additionally, the Whale Optimization Algorithm (WOA) was used for reliability optimization. Case validation confirmed that the non-probabilistic reliability calculation method, based on the convex set scaling factor and the WOA-Kriging model, effectively analyzes the reliability of gravity dams.

关键词

重力坝 / 凸集比例因子 / Kriging模型 / 有限元模型 / 非概率可靠度

Key words

gravity dam / convex set scaling factor / Kriging model / finite element model / non-probabilistic reliability

引用本文

导出引用
刘要来, 王堡生, 周红波, . 基于凸集比例因子和WOA-Kriging模型的重力坝非概率可靠性分析[J]. raybet体育在线 院报. 2025, 42(3): 164-170 https://doi.org/10.11988/ckyyb.20231174
LIU Yao-lai, WANG Bao-sheng, ZHOU Hong-bo, et al. Non-probabilistic Reliability Analysis of Gravity Dam Based on Convex Set Scale Factor and the WOA-Kriging Model[J]. Journal of Changjiang River Scientific Research Institute. 2025, 42(3): 164-170 https://doi.org/10.11988/ckyyb.20231174
中图分类号: TV642.3 (混凝土重力坝)   

参考文献

[1]
盛金保, 厉丹丹, 蔡荨, 等. 大坝风险评估与管理关键技术研究进展[J]. 中国科学(技术科学), 2018, 48(10): 1057-1067.
(SHENG Jin-bao, LI Dan-dan, CAI Xun, et al. Research Progress and Its Practice of Key Techniques for Dam Risk Assessment and Management[J]. Scientia Sinica (Technologica), 2018, 48(10): 1057-1067. (in Chinese))
[2]
顾冲时, 苏怀智, 刘何稚. 大坝服役风险分析与管理研究述评[J]. 水利学报, 2018, 49(1):26-35.
(GU Chong-shi, SU Huai-zhi, LIU He-zhi. Review on Service Risk Analysis of Dam Engineering[J]. Journal of Hydraulic Engineering, 2018, 49(1):26-35. (in Chinese))
[3]
MCCANN M, PAXSON G. Uncertainty in Dam Failure Consequence Estimates[J]. E3S Web of Conferences, 2016, 7: 11003.
[4]
顾冲时, 张晶梅. 大坝服役非概率可靠性分析方法[J]. 水利水电科技进展, 2018, 38(5):1-9.
(GU Chong-shi, ZHANG Jing-mei. Non-probabilistic Reliability Analysis Methods of Dam Service Performance[J]. Advances in Science and Technology of Water Resources, 2018, 38(5):1-9. (in Chinese))
[5]
LOW B K, TANG W H. Efficient Spreadsheet Algorithm for First-order Reliability Method[J]. Journal of Engineering Mechanics, 2007, 133(12): 1378-1387.
[6]
李育超, 凌道盛, 陈云敏, 等. 蒙特卡洛法与有限元相结合分析边坡稳定性[J]. 岩石力学与工程学报, 2005, 24(11): 1933-1941.
(LI Yu-chao, LING Dao-sheng, CHEN Yun-min, et al. Slope Stability Analysis Using Monte Carlo Technique with Fem[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(11): 1933-1941. (in Chinese))
[7]
BEN-HAIM Y. A Non-probabilistic Concept of Reliability[J]. Structural Safety, 1994, 14(4): 227-245.
[8]
BEN-HAIM Y, ELISHAKOFF I. Discussion On: A Non-probabilistic Concept of Reliability[J]. Structural Safety, 1995, 17(3): 195-199.
[9]
郭书祥, 吕震宙, 冯元生. 基于区间分析的结构非概率可靠性模型[J]. 计算力学学报, 2001, 18(1): 56-60.
(GUO Shu-xiang, Zhen-zhou, FENG Yuan-sheng. A Non-probabilistic Model of Structural Reliability Based on Interval Analysis[J]. Chinese Journal of Computational Mechanics, 2001, 18(1): 56-60. (in Chinese))
[10]
高乐星, 梁斌, 吴政. 边坡凸集模型非概率可靠度求解方法[J]. 公路交通科技, 2022, 39(5):57-64.
摘要
针对边坡工程稳定性分析中,因获取的参数原始样本信息的有限性,以及基于概率可靠性的常规可靠度计算方法的局限性,引入了边坡凸集模型非概率综合指标,形成了样本信息模糊特征条件下的边坡非概率可靠度求解方法。首先,根据有限的样本信息为参数划定一大致区间,在此区间构建边坡超椭球凸集模型。然后运用拉丁超立方抽样进行区间内采样,由于边坡工程的极限状态方程一般呈高度非线性隐式特征,采用Kriging代理模型来拟合其功能函数。最后,根据非概率可靠度和概率可靠度的相容性,引入非概率指标η,综合评估边坡的稳定性。当η>1时,评估标准为在标准的向量空间内坐标原点到极限状态曲面的最短距离;当0η<1时,采用概率可靠度作为评估指标,此时运用蒙特卡洛法依托MATLAB程序语言即可求得边坡的可靠度指标。算例表明:该方法切实可行,计算高效,结果精确。为概率可靠性方法做了有益的拓展和补充,也为求解边坡可靠度提供了新的可能性。最后,在某实际边坡工程样本信息不完备的情况下运用此方法,结果显示该边坡的失效风险很低,与简化Bishop法分析结论一致,并符合《公路工程结构可靠性设计统一标准》(JTG 2120—2020)中高速公路路基目标可靠度指标标准。
(GAO Le-xing, LIANG Bin, WU Zheng. A Solution Method of Slope Convex Set Model by Non-probabilistic Reliability[J]. Journal of Highway and Transportation Research and Development, 2022, 39(5):57-64. (in Chinese))
[11]
魏博文, 占良红, 李火坤, 等. 基于区间参数反演的重力坝非概率可靠性分析[J]. 岩土工程学报, 2020, 42(2):325-333.
(WEI Bo-wen, ZHAN Liang-hong, LI Huo-kun, et al. Non-probabilistic Reliability Analysis of Gravity Dams Based on Inversion of Interval Parameters[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(2): 325-333. (in Chinese))
[12]
吕大刚, 李功博, 宋彦. 基于MLS-SVM的结构整体可靠度与全局灵敏度分析[J]. 工程力学, 2022, 39(增刊1):92-100.
( Da-gang, LI Gong-bo, SONG Yan. Analysis Global Reliability and Sensitivity of Structures Based on MLS-SVM[J]. Engineering Mechanics, 2022,39 (Supp.1):92-100. (in Chinese))
[13]
乔心州, 陈永婧, 刘鹏, 等. 粒子群优化与Kriging模型相结合的结构非概率可靠性分析[J]. 应用数学和力学, 2022, 43(12): 1412-1421.
(QIAO Xin-zhou, CHEN Yong-jing, LIU Peng, et al. Non-probabilistic Structural Reliability Analysis Integrating the PSO and the Kriging Model[J]. Applied Mathematics and Mechanics, 2022, 43(12): 1412-1421. (in Chinese))
[14]
KAYMAZ I, MCMAHON C A. A Response Surface Method Based on Weighted Regression for Structural Reliability Analysis[J]. Probabilistic Engineering Mechanics, 2005, 20(1): 11-17.
[15]
占良红, 魏博文, 钟紫蒙, 等. 基于Kriging模型的重力坝非概率可靠性分析[J]. raybet体育在线 院报, 2019, 36(8): 159-164.
摘要
为解决概率可靠性方法分析受限于重力坝不确定参数的统计信息较难获取,及其功能函数高度非线性且较难用显式解析表达式给予刻画等问题,构建了基于不确定参数界限的重力坝单元非概率可靠性(Non-probabilistic Reliability,N-PR)指标计算模型,在此基础上,融合Kriging模型较强预测和拟合优势,发展了一种基于Kriging模型的重力坝N-PR指标计算方法。经实例考证,所给模型与方法可有效规避概率可靠性分析中要求不确定参数随机变化且计算结果对参数高度敏感的局限,较好适应了重力坝功能函数高度非线性甚至难以显式表达的特点,可较深入分析重力坝可靠性。
(ZHAN Liang-hong, WEI Bo-wen, ZHONG Zi-meng, et al. Non-probabilistic Reliability Analysis of Gravity Dam Based on Kriging Model[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(8): 159-164. (in Chinese))
In the reliability analysis for gravity dam, statistical information is challenging to be obtained by probability reliability analysis due to the limitations posed by uncertain parameters, and the functions are highly nonlinear hence are difficult to be described with analytical expression. In view of this, a non-probabilistic reliability(N-PR) index calculation model of gravity dam in consideration of uncertain parameter ranges is constructed. On this basis,the calculation method of N-PR index for gravity dam in association with Kriging model’s strong prediction and fitting advantages is built.A practical engineering example demonstrates that the present method effectively overcomes the limits that the uncertain parameters shall vary randomly in probability reliability analysis and the calculation results are highly sensitive to the parameters. The method also adapts to the highly nonlinear function of gravity dam.
[16]
宋蕾, 欧斌, 刘中明, 等. 重力坝可靠性分析的IPSO-Kriging模型[J]. 南水北调与水利科技, 2021, 19(4): 768-775.
(SONG Lei, OU Bin, LIU Zhong-ming, et al. Reliability Analysis of Gravity Dam Based on IPSO-kriging Model[J]. South-to-North Water Transfers and Water Science & Technology, 2021, 19(4): 768-775. (in Chinese))
[17]
李正良, 王成, 王涛, 等. 基于主动学习Kriging模型的直立锁缝屋面系统抗风揭可靠度分析[J]. 工程力学, 2022, 39(10):111-119.
(LI Zheng-liang, WANG Cheng, WANG Tao, et al. Reliability Analysis of Wind-Resistance of Standing Seam Roof System Based on Active Learning Kriging Model[J]. Engineering Mechanics, 2022, 39(10):111-119. (in Chinese))
[18]
MIRJALILI S, LEWIS A. The Whale Optimization Algorithm[J]. Advances in Engineering Software, 2016, 95: 51-67.
[19]
冯世琪, 廖林清, 贾秋红, 等. 基于凸集模型的非概率稳健可靠性理论的研究[C]// 重庆汽车工程学会.“技术创新与核心能力建设”重庆汽车工程学会2006年会论文集. 重庆: 重庆汽车工程学会, 2006:1-11.
(FENG Shi-qi, LIAO Lin-qing, JIA Qiu-hong, et al. Research on the Non-probabilistic Robust Reliability Theory Based on the Convex Set Models[C]// Society of Automotive Engineers of Chongqing. Proceedings of the 2006 Annual Conference of Society of Automotive Engineers of Chongqing “Technological Innovation and Core Competence Construction”. Chongqing: Society of Automotive Engineers of Chongqing, 2006:1-11. (in Chinese))
[20]
乔心州, 仇原鹰, 孔宪光. 一种基于椭球凸集的结构非概率可靠性模型[J]. 工程力学, 2009, 26(11):203-208.
(QIAO Xin-zhou, QIU Yuan-ying, KONG Xian-guang. A Non-probabilistic Model of Structural Reliability Based on Ellipsoidal Convex Model[J]. Engineering Mechanics, 2009, 26(11):203-208. (in Chinese))
[21]
刘成立. 复杂结构可靠性分析及设计研究[D]. 西安: 西北工业大学, 2006.
(LIU Cheng-li. Research on Reliability Analysis and Design of Complex Structures[D]. Xi’an: Northwestern Polytechnical University, 2006. (in Chinese))
[22]
郝俊猛. 基于高斯过程—粒子群优化算法的工程结构非概率可靠度分析方法[D]. 南宁: 广西大学, 2014.
(HAO Jun-meng. Non-probabilistic Reliability Analysis Method of Engineering Structure Based on Gaussian Process-particle Swarm Optimization Algorithm[D]. Nanning: Guangxi University, 2014. (in Chinese))
[23]
俞茂宏. 岩土类材料的统一强度理论及其应用[J]. 岩土工程学报, 1994, 16(2):1-10.
(YU Mao-hong. Unified Strength Theory for Geomaterials and Its Applications[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(2):1-10. (in Chinese))

基金

国家自然科学基金项目(52079046)

编辑: 占学军
PDF(7565 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map