基于BP-PCA-WCA-SVM的混凝土大坝变形预测方法

朱小韦, 袁占良, 李宏超

raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (9) : 138-145.

PDF(1255 KB)
PDF(1255 KB)
raybet体育在线 院报 ›› 2024, Vol. 41 ›› Issue (9) : 138-145. DOI: 10.11988/ckyyb.20230194
工程安全与灾害防治

基于BP-PCA-WCA-SVM的混凝土大坝变形预测方法

作者信息 +

A Method of Predicting Concrete Dam Deformation Based on BP-PCA-WCA-SVM

Author information +
文章历史 +

摘要

传统基于单一模型的混凝土大坝变形预测方法预测精度低,噪声稳健性差,泛化能力弱。为解决该问题,提出一种基于贝塔先验主成分分析(BP-PCA)与水循环算法(WCA)优化支撑向量机(SVM)相结合的混凝土大坝变形组合预测方法。首先利用所提BP-PCA模型对变形数据进行多尺度降噪分解,将复杂非线性、非平稳随机过程分解为一系列结构简单的主分量;然后利用WCA优化的SVM(WCA-SVM)对每个主分量分别建立预测模型;最后将多个主分量的预测结果综合叠加得到最终预测结果。以我国中部地区某混凝土大坝变形监测数据开展试验,结果表明,所提BP-PCA模型能够有效挖掘数据中隐含的趋势性和规律性信息,BP-PCA-WCA-SVM模型能够获得较高的预测精度,预测结果的相对误差为1.07%,误差均方根为0.065。相对于Kalman滤液、SVM、CNN 3种方法,所提模型预测性能提升均超过62%,并且具有更强的噪声稳健性和泛化能力。

Abstract

Traditional single-model prediction methods suffer from issues like low accuracy, susceptibility to noise, and limited generalization capability. To address these challenges, we propose a novel approach for predicting concrete dam deformation by integrating the Beta Prior Principal Component Analysis (BP-PCA) and the Water Cycle Algorithm (WCA). Initially, the BP-PCA model decomposes deformation data into multiple scales, effectively reducing noise. This decomposition transforms the intricate nonlinear and non-stationary stochastic process into a set of principal components with simplified structures. Simultaneously, it enhances noise robustness by suppressing noise during the decomposition process. Subsequently, we employ the Water Cycle Algorithm optimized Support Vector Machine (WCA-SVM) to construct prediction models for each principal component. Finally, we integrate the prediction outcomes from multiple principal components to derive the final prediction result. The relative prediction error is minimized to 1.07%, with a root mean square error of 0.065. Compared to the three methods included in the comparative analysis, our approach yields over 62% improvement in prediction performance, demonstrating superior noise robustness and generalization capability.

关键词

混凝土大坝 / 变形预测 / 主成分分析 / 水循环算法 / 噪声稳健性

Key words

concrete dam / deformation prediction / principal component analysis / water cycle algorithm / noise robustness

引用本文

导出引用
朱小韦, 袁占良, 李宏超. 基于BP-PCA-WCA-SVM的混凝土大坝变形预测方法[J]. raybet体育在线 院报. 2024, 41(9): 138-145 https://doi.org/10.11988/ckyyb.20230194
ZHU Xiao-wei, YUAN Zhan-liang, LI Hong-chao. A Method of Predicting Concrete Dam Deformation Based on BP-PCA-WCA-SVM[J]. Journal of Yangtze River Scientific Research Institute. 2024, 41(9): 138-145 https://doi.org/10.11988/ckyyb.20230194
中图分类号: TP258   

参考文献

[1]
WU Bang-bin, NIU Jing-tai, SU Huai-zhi, et al. An Approach for Deformation Modulus Mechanism of Super-High Arch Dams[J]. Structural Engineering and Mechanics, 2019, 69(5): 557-566.
[2]
WEI B, YUAN D, LI H, et al. Combination Forecast Model for Concrete Dam Displacement Considering Residual Correction[J]. Structural Health Monitoring, 2019, 18(1): 232-244.
[3]
袁德宝, 张振超, 张军, 等. 最优化分数阶算子EGM(1,1)模型在变形监测预报中的应用[J]. 大地测量与地球动力学, 2020, 40(4): 331-334, 345.
(YUAN De-bao, ZHANG Zhen-chao, ZHANG Jun, et al. Application of Optimized Fractional Order EGM (1, 1) Model in Deformation Monitoring and Forecasting[J]. Journal of Geodesy and Geodynamics, 2020, 40(4): 331-334, 345. (in Chinese))
[4]
杨玲, 魏静, 许子伏. 基于平滑先验法-麻雀搜索算法-支撑向量机回归模型的滑坡位移预测:以三峡库区八字门和白水河滑坡为例[J]. 地球科学与环境学报, 2022, 44(6): 1096-1110.
(YANG Ling, WEI Jing, XU Zi-fu. Displacement Prediction of Landslide Based on SPA-SSA-SVR Model: Taking Bazimen and Baishuihe Landslides in Three Gorges Reservoir Area, China as Examples[J]. Journal of Earth Sciences and Environment, 2022, 44(6): 1096-1110. (in Chinese))
[5]
王利, 岳聪, 舒宝, 等. 基于混沌时间序列的黄土滑坡变形预测方法及应用[J]. 地球科学与环境学报, 2021, 43(5): 917-925.
(WANG Li, YUE Cong, SHU Bao, et al. Chaotic Time Series Based Surface Displacement Prediction Method and Application to Loess Landslides[J]. Journal of Earth Sciences and Environment, 2021, 43(5): 917-925. (in Chinese))
[6]
臧妻斌, 黄腾. 时间序列分析在地铁变形监测中的应用[J]. 测绘科学, 2014, 39(7): 155-157.
(ZANG Qi-bin, HUANG Teng. Application of Time Series Analysis in Subway Deformation Monitoring[J]. Science of Surveying and Mapping, 2014, 39(7): 155-157. (in Chinese))
[7]
石强, 戴吾蛟, 晏慧能, 等. 时空Kalman滤波在变形分析中的应用研究[J]. 测绘学报, 2022, 51(10): 2125-2138.
(SHI Qiang, DAI Wu-jiao, YAN Hui-neng, et al. Research on Application of Spatio-temporal Kalman Filter in Deformation Analysis[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51(10): 2125-2138. (in Chinese))
[8]
周春霖, 王有志, 徐刚年, 等. 基于优化非等时距权重傅里叶灰色模型的变形预测[J]. 人民长江, 2019, 50(1): 207-210.
(ZHOU Chun-lin, WANG You-zhi, XU Gang-nian, et al. Optimization of Non-equal Interval Weight Fourier Grey Model for Deformation Prediction[J]. Yangtze River, 2019, 50(1): 207-210. (in Chinese))
[9]
ORLAND E, ROERING J J, THOMAS M A, et al. Deep Learning as a Tool to Forecast Hydrologic Response for Landslide-prone Hillslopes[J]. Geophysical Research Letters, 2020, 47(16): 1-12.
[10]
XIN J, ZHOU J, YANG S X, et al. Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model[J]. Sensors, 2018, 18(1): 298.
[11]
刘晶磊, 张国朋, 张冲冲, 等. 基于误差分级迭代法的基坑变形预测[J]. 科学技术与工程, 2021, 21(14): 5822-5827.
(LIU Jing-lei, ZHANG Guo-peng, ZHANG Chong-chong, et al. Research on Deformation Prediction of Foundation Pit Based on Error Grading Iterative Method[J]. Science Technology and Engineering, 2021, 21(14): 5822-5827. (in Chinese))
[12]
牛景太. 基于奇异谱分析与PSO优化SVM的混凝土坝变形监控模型[J]. 水利水电科技进展, 2020, 40(6): 60-65, 77.
(NIU Jing-tai. Dam Deformation Monitoring Model Based on Singular Spectrum Analysis and SVM Optimized by PSO[J]. Advances in Science and Technology of Water Resources, 2020, 40(6): 60-65, 77. (in Chinese))
[13]
XING Y, YUE J, CHEN C. Interval Estimation of Landslide Displacement Prediction Based on Time Series Decomposition and Long Short-term Memory Network[J]. IEEE Access, 2019, 8: 3187-3196.
[14]
张健飞, 衡琰. 基于VMD-PE-CNN的混凝土坝变形预测模型[J]. 水利水电技术(中英文), 2022, 53(11): 100-109.
(ZHANG Jian-fei, HENG Yan. VMD-PE-CNN-based Deformation Prediction Model of Concrete Dam[J]. Water Resources and Hydropower Engineering, 2022, 53(11): 100-109. (in Chinese))
[15]
TIPPING M E, BISHOP C M. Probabilistic principle Component analysis[J]. Journal of Royal Statistical Society, 1999, 61(3): 611-622.
[16]
NIELSEN F B. Variational Approach to Factor Analysis and Related Models[D]. Denmark: Technical University of Denmark, 2003.
[17]
AKAIKE H. A New Look at the Statistical Model Identification[J]. IEEE Transactions on Automatic Control, 1974, 19(6): 716-723.
[18]
容静, 刘立龙, 康昊华, 等. 基于方差补偿自适应Kalman滤波的ARMA与PSO-SVM模型变形预测[J]. 大地测量与地球动力学, 2018, 38(7): 689-694.
(RONG Jing, LIU Li-long, KANG Hao-hua, et al. The Deformation Prediction of ARMA and PSO-SVM Model Based on Variance Compensation Adaptive Kalman Filter[J]. Journal of Geodesy and Geodynamics, 2018, 38(7): 689-694. (in Chinese))

基金

国家自然科学基金项目(41572341)
:教育部高等学校科学研究发展中心专项课题(ZJXF2022161)

编辑: 黄玲
PDF(1255 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map