基于RS-SSA-RF的帷幕灌浆施工质量预测

宋铭明, 刘宗显

raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (11) : 125-130.

PDF(6150 KB)
PDF(6150 KB)
raybet体育在线 院报 ›› 2023, Vol. 40 ›› Issue (11) : 125-130. DOI: 10.11988/ckyyb.20230062
岩土工程

基于RS-SSA-RF的帷幕灌浆施工质量预测

  • 宋铭明1, 刘宗显2,3
作者信息 +

Prediction of Curtain Grouting Construction Quality Based on Rough Set Theory, Salp Swarm Algorithm, and Random Forests

  • SONG Ming-ming1, LIU Zong-xian2,3
Author information +
文章历史 +

摘要

灌浆施工质量预测作为施工过程控制的重要抓手,为寻求具有高精度及低耗时性的灌浆施工质量预测方法,建立了基于粗糙集理论和樽海鞘群算法优化的随机森林的灌浆施工质量预测模型。通过工程应用,对帷幕灌浆施工质量进行了预测分析,并与支持向量机、BP神经网络对比,结果显示本文所提出的方法耗时仅为219.313 s,预测值与实测值的Pearson相关系数为0.936、平均绝对误差为0.140、均方误差为0.037、平均绝对百分比误差为0.059,与实际值具有一致性。研究表明,所建立的模型可为灌浆施工质量控制提供参考。

Abstract

To develop a grouting construction quality prediction model that is both highly accurate and efficient, we established a curtain grouting construction quality model based on an integration of the Rough Set Theory, Salp Swarm Algorithm, and Random Forests. The model is specifically designed for practical application in engineering projects. Comparisons were made with the SVM and BP neural network models, revealing that the proposed model achieved superior performance. Specifically, the proposed model required a mere 219.313 s for computation, and exhibited a Pearson correlation coefficient of 0.936 between predicted and measured values. Furthermore, the average absolute error, mean square error, and average absolute percentage error were measured at 0.140, 0.037, and 0.059, respectively. These findings highlight the potential of the proposed model to serve as a valuable reference for grouting construction quality control.

关键词

帷幕灌浆 / 粗糙集理论 / 樽海鞘群算法 / 随机森林 / 施工质量 / 回归预测

Key words

curtain grouting / rough set theory / salp swarm algorithm / random forest / construction quality / regression prediction

引用本文

导出引用
宋铭明, 刘宗显. 基于RS-SSA-RF的帷幕灌浆施工质量预测[J]. raybet体育在线 院报. 2023, 40(11): 125-130 https://doi.org/10.11988/ckyyb.20230062
SONG Ming-ming, LIU Zong-xian. Prediction of Curtain Grouting Construction Quality Based on Rough Set Theory, Salp Swarm Algorithm, and Random Forests[J]. Journal of Changjiang River Scientific Research Institute. 2023, 40(11): 125-130 https://doi.org/10.11988/ckyyb.20230062
中图分类号: TV523   

参考文献

[1] 施 炎, 黄灿新, 王团乐, 等. 基于GIM的水利水电灌浆工程三维可视化分析方法与应用[J]. raybet体育在线 院报, 2022, 39(8): 133-139.
[2] 陈华俊. 岩溶库区帷幕灌浆技术及其工艺参数优化[J]. raybet体育在线 院报, 2022,39(7): 144-148, 153.
[3] 夏峻峰, 岳雪波, 张绍奎, 等. 大坝帷幕灌浆第三方质量检查及效果评价[J]. 人民长江, 2013, 44(6): 89-92.
[4] 雷英成, 张伯韬, 王 刚. 猴子岩水电站帷幕灌浆质量物探检测技术[J]. 水力发电, 2018, 44(11): 88-92, 116.
[5] 张 科, 刘享华, 杨红宣, 等. 含孔洞裂隙岩体灌浆后力学特性的物理试验与数值模拟[J]. 水文地质工程地质, 2019, 46(1): 79-85, 110.
[6] YANG C-P. Estimating Cement Take and Grout Efficiency on Foundation Improvement for Li-Yu-Tan Dam[J]. Engineering Geology, 2004, 75(1): 1-14.
[7] ZADHESH J, RASTEGAR F, SHARIFI F, et al. Consolidation Grouting Quality Assessment Using Artificial Neural Network (ANN)[J]. Indian Geotechnical Journal, 2015, 45(2): 136-144.
[8] LI X, ZHONG D, REN B, et al. Prediction of Curtain Grouting Efficiency Based on ANFIS[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(1): 281-309.
[9] 刘宗显, 余 佳, 吴斌平, 等. 基于LWOA和MKSVM算法的帷幕灌浆施工质量模糊综合动态评价研究[J]. 水利水电技术, 2020, 51(6): 72-83.
[10] 张德永, 王玉洲, 张志豪, 等. 基于正交设计和粗糙集理论的地基极限承载力影响因素分析[J]. raybet体育在线 院报, 2015,32(9): 118-122.
[11] 白 云, 陈国强. 基于尺度特征融合的随机森林日供水量预测模型[J]. raybet体育在线 院报, 2022, 39(3): 33-37.
[12] MIRJALILI S, GANDOMI A H, MIRJALILI S Z, et al. Salp Swarm Algorithm: A Bio-inspired Optimizer for Engineering Design Problems[J]. Advances in Engineering Software, 2017, 114: 163-191.
[13] PAWLAK Z.Rough Sets[J].International Journal of Computer & Information Sciences,1982,11(5):341-356.
[14] BREIMAN L. Random Forests[J]. Machine Learning, 2001, 45(1): 5-32.
[15] 温博文, 董文瀚, 解武杰, 等. 基于改进网格搜索算法的随机森林参数优化[J]. 计算机工程与应用, 2018, 54(10): 154-157.
[16] LIU Z, SONG W, CUI B, et al. A Comprehensive Evaluation Model for Curtain Grouting Efficiency Assessment Based on Prospect Theory and Interval-Valued Intuitionistic Fuzzy Sets Extended by Improved D Numbers[J]. Energies, 2019, 12(19): 3674.

基金

雅砻江流域水电开发有限公司科研项目(LHKG2022KY116YS)

PDF(6150 KB)

Accesses

Citation

Detail

段落导航
相关文章

/

Baidu
map