为缓解大量存在且利用率很低的钢渣处理难题,将其研磨成微粉置换水泥,并掺入硅灰形成一种兼顾力学性能、绿色低碳水泥基材料。基于不同配比的复掺水泥基材料体系的流变行为、早期水化热、强度与吸水率试验研究,主要结果如下:钢渣粉颗粒微形貌棱角与片状较少,替代15%水泥时可有效改善基体稠度,略微降低强度,并显著降低早期水化放热(降幅8.8%),有利于控制早期温度裂缝。复掺硅灰可有效降低材料塑性黏度与泵送压力,对需要长距离泵送的大体积混凝土或高性能混凝土,硅灰掺量可控制在5%以内。且硅灰空间填充效应与火山灰反应会增强材料密实性,显著提高强度。综上,复掺15%钢渣粉和5%硅灰的水泥基材料,不仅可以改善泵送性能,提升强度和耐久性,还能降低早期水化放热量,具有良好的工程应用前景。
Abstract
To address the challenge of steel slag disposal, characterized by large quantities and low utilization rates, we prepared a green, low-carbon cement-based material with optimized mechanical properties by substituting part of the cement with steel slag ground into micro-powder and combined with silica fume. We conducted experimental studies on the rheological behavior, early hydration exotherm, strength, and water absorption of the prepared composite cement-based material system at various proportions. Our key findings are as follows: 1) Steel slag powder particles exhibits a less angular and flaky micro-morphology. When replacing 15% of the cement, steel slag powder effectively enhances matrix consistency, slightly reduces strength, and significantly decreases early hydration heat release by 8.8%, which is beneficial to the control of early temperature-induced cracking.2) Incorporating silica fume notably decreases the material’s plastic viscosity and pumping pressure. For applications requiring long-distance pumping, such as mass concrete or high-performance concrete, silica fume content should be limited to 5%. Additionally, silica fume’s space-filling effect and pozzolanic reaction enhances the material’s compactness and substantially improves strength. In summary, cement-based material incorporating 15% steel slag powder and 5% silica fume not only enhances pumping performance, strength, and durability but also mitigates early hydration heat release, demonstrating promising engineering applications.
关键词
钢渣粉 /
硅灰 /
流变 /
早期水化热 /
强度 /
吸水率
Key words
steel slag powder /
silica fume /
rheology /
early hydration heat /
strength /
water absorption
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王会刚,彭 犇,岳昌盛,等.钢渣改性研究进展及展望[J].环境工程,2020,38(5):133-137,106.(WANG Hui-gang, PENG Ben, YUE Chang-sheng, et al. Research Progress and Prospect of Steel Slag Modification[J]. Environmental Engineering, 2020, 38(5): 133-137, 106.(in Chinese))
[2] 张朝晖, 廖杰龙, 巨建涛, 等. 钢渣处理工艺与国内外钢渣利用技术[J]. 钢铁研究学报, 2013, 25(7): 1-4. (ZHANG Zhao-hui, LIAO Jie-long, JU Jian-tao, et al. Treatment Process and Utilization Technology of Steel Slag in China and Abroad[J]. Journal of Iron and Steel Research, 2013, 25(7): 1-4.(in Chinese))
[3] 吴跃东,彭 犇,吴 龙,等.国内外钢渣处理与资源化利用技术发展现状综述[J].环境工程,2021,39(1):161-165.(WU Yue-dong, PENG Ben, WU Long, et al. Review on Global Development of Treatment and Utilization of Steel Slag[J]. Environmental Engineering, 2021, 39(1): 161-165.(in Chinese))
[4] 何智海, 张晓翔, 詹培敏, 等. 钢渣粉及其对水泥基材料性能的影响研究进展[J]. 混凝土, 2020(2): 83-89, 93. (HE Zhi-hai, ZHANG Xiao-xiang, ZHAN Pei-min, et al. Research Progress of Steel Slag Powder and Its Effect on the Properties of Cement-based Materials[J]. Concrete, 2020(2): 83-89, 93.(in Chinese))
[5] 袁 振, 晋 强, 王秀红, 等. 钢渣粉掺量对泡沫混凝土物理力学性能的影响[J]. 新型建筑材料, 2019, 46(6): 91-95. (YUAN Zhen, JIN Qiang, WANG Xiu-hong, et al. Effect of Different Content of Steel Slag Powder on Basic Physical and Mechanical Properties of Foamed Concrete[J]. New Building Materials, 2019, 46(6): 91-95.(in Chinese))
[6] 马麟涛, 盛国华, 王肖宇, 等. 超高掺量钢渣水泥基复合材料抗压试验研究[J]. 混凝土, 2022(8): 102-104, 124. (MA Lin-tao, SHENG Guo-hua, WANG Xiao-yu, et al. Experimental Study on the Compressive Strength of Cement-based Composites with Super High Volume of Steel Slag[J]. Concrete, 2022(8): 102-104, 124.(in Chinese))
[7] 阎培渝, 黎梦圆, 韩建国, 等. 新拌混凝土可泵性的研究进展[J]. 硅酸盐学报, 2018, 46(2): 239-246. (YAN Pei-yu, LI Meng-yuan, HAN Jian-guo, et al. Recent Development on Pumpability of Fresh Concrete[J]. Journal of the Chinese Ceramic Society, 2018, 46(2): 239-246.(in Chinese))
[8] 元 强,李白云,史才军,等.混凝土泵送性能的流变学表征及预测综述[J].材料导报,2018,32(17):2976-2985.(YUAN Qiang, LI Bai-yun, SHI Cai-jun, et al. An Overview on the Prediction and Rheological Characterization of Pumping Concrete[J]. Materials Review, 2018, 32(17): 2976-2985.(in Chinese))
[9] 魏国力,游杰勇,李培彦,等.低热水泥复掺粉煤灰体系的强度放热与水化演变研究[J].混凝土,2022(2):54-59.(WEI Guo-li, YOU Jie-yong, LI Pei-yan, et al. Study on Strength Exothermic and Hydration Evolution of Low Heat Cement Mixed with Fly Ash[J]. Concrete, 2022(2): 54-59.(in Chinese))
[10] 王重阳, 李晓丽, 赵晓泽, 等. 碱激发下砒砂岩钢渣粉水泥复合土强度及微观机理[J]. raybet体育在线
院报, 2023, 40(7): 132-138. (WANG Chong-yang, LI Xiao-li, ZHAO Xiao-ze, et al. Strength and Micromechanism of Arsenic-bearing Sandstone-steel Slag Powder Cement Composite Soil under Alkali Excitation[J]. Journal of Changjiang River Scientific Research Institute, 2023, 40(7): 132-138.(in Chinese))
[11] 李茂森, 江金萍, 刘 怀, 等. 锂渣和钢渣对水泥浆体力学性能与微观结构的影响[J]. 硅酸盐通报, 2022, 41(6):2098-2107.(LI Mao-sen, JIANG Jin-ping, LIU Huai, et al.Effects of Lithium Slag and Steel Slag on Mechanical Properties and Microstructure of Cement Paste[J]. Bulletin of the Chinese Ceramic Society, 2022, 41(6): 2098-2107.(in Chinese))
[12] 赵 成, 陈佩圆, 张立恒, 等. 硅灰对MgO-激发矿渣材料水化及力学性能的影响[J]. 混凝土, 2022(7): 103-106. (ZHAO Cheng, CHEN Pei-yuan, ZHANG Li-heng, et al. Effect of Silica Fume on Hydration and Mechanical Properties of MgO-activated Materials[J]. Concrete, 2022(7): 103-106.(in Chinese))
[13] 何 真, 蒋 睿, 李 杨. 砂浆静-动态流变的黏弹塑性特征[J]. 水利学报, 2018, 49(5): 561-569. (HE Zhen, JIANG Rui, LI Yang. Viscoelasticity Characteristics of Mortars in Static and Dynamic Rheological Test[J]. Journal of Hydraulic Engineering, 2018, 49(5): 561-569.(in Chinese))
[14] 李海峰, 苏宇峰. 高效减水剂对蒸压加气混凝土流变和力学性能的影响[J]. 新型建筑材料, 2022, 49(5): 70-74, 83. (LI Hai-feng, SU Yu-feng. Effects of Superplasticizers on Rheological and Mechanical Properties of Autoclaved Aerated Concrete[J]. New Building Materials, 2022, 49(5): 70-74, 83.(in Chinese))
[15] CHOI M, ROUSSEL N, KIM Y, et al. Lubrication Layer Properties during Concrete Pumping[J]. Cement and Concrete Research, 2013, 45: 69-78.
[16] LIU J, WANG K, ZHANG Q, et al. Effects of Ultrafine Powders on the Properties of the Lubrication Layer and Highly Flowable Concrete[J]. Journal of Materials in Civil Engineering, 2020, 32(5): 04020099.
[17] MA B, PENG Y, TAN H, et al. Effect of Hydroxypropyl-methyl Cellulose Ether on Rheology of Cement Paste Plasticized by Polycarboxylate Superplasticizer[J]. Construction and Building Materials, 2018, 160: 341-350.
[18] WENG Y, LI M, TAN M J, et al. Design 3D Printing Cementitious Materials via Fuller Thompson Theory and Marson-Percy Model[J]. Construction and Building Materials, 2018, 163: 600-610.
[19] CUI J, HE Z, ZHANG G, et al. Rheology, Mechanical Properties and Pore Structure of Sprayed Ultra-high Performance Concrete (SUHPC) with Viscosity-enhancing Agent[J]. Construction and Building Materials, 2022, 350: 128840.
[20] ASHRAF W B, NOOR M A. Performance-evaluation of Concrete Properties for Different Combined Aggregate Gradation Approaches[J]. Procedia Engineering, 2011, 14: 2627-2634.
基金
交通运输行业重点科技项目(2022-ZD4-064)