尾矿库是重大危险源且存在溃坝危险,为了更真实地预测尾矿库溃坝造成的影响,定量掌握尾矿库的溃坝过程及其对下游的影响程度,利用细粒尾砂与膨胀珍珠岩按照体积比尺1.5:1进行混合制作复合模型沙,通过室内试验和水下休止角试验确定复合模型沙的基本可行性;并在满足相似条件的基础上,开展极端状态下的复合模型沙大比尺尾矿库漫顶溃坝试验,分析其溃坝过程、流量过程、断面形态演变过程、浸润线、淹没高程和范围等变化规律。试验结果表明:物理模型试验历时140 min,复合模型沙下泄量占总库容的10.76%,下游区域淤积量占下泄量的95.21%,基本符合漫顶溃坝的实际情况,设计选配的复合模型沙合理,说明该复合模型沙能够更真实有效地还原尾矿库溃坝过程。研究结果为尾矿库漫顶溃坝试验中模型沙的选择提供了新思路。
Abstract
To better predict the impacts of tailings pond breaches and quantitatively understand the breach process and downstream effects, we prepared a composite model sand by mixing fine-grained tailing sand and expanded perlite in a 1.5:1 volume ratio. Indoor tests and measurements of underwater angle of repose confirmed the feasibility of the composite model sand under similar conditions. Based on this, we conducted large-scale overtopping dam failure tests under extreme conditions to analyze the changes in dam breach process, flow process, section morphology evolution, phreatic line, inundation elevation and range. The physical model test lasted 140 minutes, during which the composite model sand discharge accounted for 10.76% of the total storage capacity, and downstream siltation accounted for 95.21% of this discharge. These results are consistent with the real-world situation of overtopping failure, demonstrating the reasonability and effectiveness of the composite model sand for more realistically simulating tailings pond breach processes. These findings also offer new insights for selecting model sand in future overtopping failure tests for tailings pond.
关键词
复合模型沙 /
尾矿库 /
漫顶溃坝 /
模型试验 /
浸润线
Key words
composite model sand /
tailings pond /
overtopping dam failure /
model test /
phreatic line
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 张幸农, 窦国仁. 常用模型沙及其特性综述[J]. 水利水运科学研究, 1994(1): 45-51. (ZHANG Xing-nong, DOU Guo-ren. Review of Common Model Sands and Their Specific Properties[J]. Journal of Nanjing Hydraulic Research Institute, 1994(1): 45-51.(in Chinese))
[2] 王延贵, 胡春宏, 朱毕生. 模型沙起动流速公式的研究[J]. 水利学报, 2007, 38(5): 518-523. (WANG Yan-gui, HU Chun-hong, ZHU Bi-sheng. Study on Formula of Incipient Velocity of Sediment in Model Test[J]. Journal of Hydraulic Engineering, 2007, 38(5): 518-523.(in Chinese))
[3] 师 哲,龙超平,严 军.粉煤灰模型沙的试验研究[J].raybet体育在线
院报,2000,17(3):14-18.(SHI Zhe,LONG Chao-ping,YAN Jun.Investigation of Flyash Model Sands[J]. Journal of Yangtze River Scientific Research Institute, 2000, 17(3): 14-18.(in Chinese))
[4] 宋东升, 李国斌, 许 慧, 等. 竹粉模型沙特性试验研究[J]. 泥沙研究, 2014(1): 27-32. (SONG Dong-sheng, LI Guo-bin, XU Hui, et al. Experimental Research on Characteristics of Bamboo Powder Model Sediment[J]. Journal of Sediment Research, 2014(1): 27-32.(in Chinese))
[5] 范红霞, 朱立俊, 王建中. 生物质稻壳炭模型沙特性与应用试验研究[J]. 泥沙研究, 2021, 46(2): 15-20. (FAN Hong-xia, ZHU Li-jun, WANG Jian-zhong. Experimental Study on Properties and Application of Rice Hull Char Model Sand[J]. Journal of Sediment Research, 2021, 46(2): 15-20.(in Chinese))
[6] 费晓昕,张幸农,张思和,等.膨胀珍珠岩模型沙水力学特性试验研究[J]. 水道港口,2017,38(3):223-227.(FEI Xiao-xin,ZHANG Xing-nong, ZHANG Si-he, et al. Development of a New Model Sand Made from Expanded Perlite and Its Characteristics Test[J]. Journal of Waterway and Harbor, 2017, 38(3): 223-227.(in Chinese))
[7] 孙贵洲, 魏国远, 汪明娜. 亲水性树脂基复合模型沙力学特性试验研究[J]. raybet体育在线
院报, 2007, 24(1): 4-7, 15. (SUN Gui-zhou, WEI Guo-yuan, WANG Ming-na. Experimental Research on Physical Characteristics of Compound Model Sands Made of Hydrophilic Resin[J]. Journal of Yangtze River Scientific Research Institute, 2007, 24(1): 4-7, 15.(in Chinese))
[8] 谢佩珍. 在动床试验中试用二种不同比重的模型沙[J]. 福州大学学报(自然科学版), 1991, 19(4): 90-97. (XIE Pei-zhen. Trial Use of Two Model Materials with Different Specific Gravities in Studies of Model with Movable Bed[J]. Journal of Fuzhou University (Natural Science Edition), 1991, 19(4): 90-97.(in Chinese))
[9] JING X F,CHEN Y L,XIE D,et al. The Effect of Grain Size on the Hydrodynamics of Mudflow Surge from a Tailings Dam-break[J]. Applied Sciences,2019,9(12):2474.
[10] YUAN L W,LI S M,PENG B,et al. Study on Failure Process of Tailing Dams Based on Particle Flow Theories[J]. International Journal of Simulation Modelling,2015,14(4):658-668.
[11] 张力霆, 齐清兰, 李 强, 等. 尾矿库坝体溃决演进规律的模型试验研究[J]. 水利学报, 2016, 47(2): 229-235. (ZHANG Li-ting, QI Qing-lan, LI Qiang, et al. Experimental Model Study on Dam Break and Evolution Law of Tailings Pond[J]. Journal of Hydraulic Engineering, 2016, 47(2): 229-235.(in Chinese))
[12] QI Q L,ZHANG L T,WANG X G,et al. Model Test Study on Dam Failure in Tailings Pond[J]. IOP Conference Series: Earth and Environmental Science,2019,304(2), Doi: 10.1088/1755-1315/304/2/022057.
[13] WANG G J,KANG J W,DU C,et al. Study on Tailings Dam Overtopping Failure Model Test and Break Mechanism under the Rainfall Condition[J]. Tehnicki vjesnik-Technical Gazette, 2017, 24(6): 1897-1904.
[14] 党显璋, 高茂生, 张力霆, 等. 不同堆积密实度下尾矿库洪水漫顶溃坝的模型试验研究[J]. 海洋地质前沿, 2018, 34(9): 79-84. (DANG Xian-zhang, GAO Mao-sheng, ZHANG Li-ting, et al. Experimental Study on the Model of Flood Overtopping and Dam Break of a Tailing Pond under Different Deposit Compactness[J]. Marine Geology Frontiers, 2018, 34(9): 79-84.(in Chinese))
[15] SUN E J,ZHANG X K,LI Z X, et al. Tailings Dam Flood Overtopping Failure Evolution Pattern[J]. Procedia Engineering,2012,28:356-362.
[16] 张红武, 刘 磊, 卜海磊, 等. 尾矿库溃坝模型设计及试验方法[J]. 人民黄河, 2011, 33(12): 1-5. (ZHANG Hong-wu, LIU Lei, BU Hai-lei, et al. Test and Design of Tailings Dam Model[J]. Yellow River, 2011, 33(12): 1-5.(in Chinese))
[17] SL 99—2012, 河工模型试验规程[S]. 北京: 水利水电出版社, 2012. (SL 99—2012, Test Regulation for Model of River[S]. Beijing: China Water & Power Press, 2012. (in Chinese))
[18] 闵凤阳, 姚仕明, 黎礼刚. 模型沙特性研究进展[J]. raybet体育在线
院报, 2011, 28(2): 79-86. (MIN Feng-yang, YAO Shi-ming, LI Li-gang. Advances in Study on Characteristics of Model Sand[J]. Journal of Yangtze River Scientific Research Institute, 2011, 28(2): 79-86.(in Chinese))
[19] RICO M,BENITO G,DŘEZ-HERRERO A. Floods from Tailings Dam Failures[J]. Journal of Hazardous Materials,2008,154(1/2/3):79-87.
[20] WU T, QIN J. Experimental Study of a Tailings Impoundment Dam Failure Due to Overtopping[J]. Mine Water and the Environment,2018,37(2):272-280.
基金
辽宁省教育厅青年基金项目(LJKQZ2021153);辽宁工程技术大学学科创新团队项目(LNTU20TD-12)