院报 ›› 2022, Vol. 39 ›› Issue (9): 56-64.DOI: 10.11988/ckyyb.20210462

• 工程安全与灾害防治 • 上一篇    下一篇

大华滑坡位移预测模型研究

王伟1,2, 邹丽芳3, 周倩瑶1,2, 姜宇航1,2, 陈鸿杰4, 徐卫亚1,2   

  1. 1.河海大学 岩土工程科学研究所,南京 210024;
    2.河海大学 岩土力学与堤坝工程教育部重点实验室,南京 210024;
    3.河海大学 地球科学与工程学院,南京 211100;
    4.华能澜沧江水电股份有限公司,昆明 650214
  • 收稿日期:2021-05-14 修回日期:2021-07-15 出版日期:2022-09-01 发布日期:2022-09-21
  • 通讯作者: 邹丽芳(1982-),女,江苏无锡人,讲师, 博士,主要从事岩体渗流、岩石力学与工程方向的研究。E-mail:zoulifang@hhu.edu.cn
  • 作者简介:王 伟(1978-),男,安徽合肥人,教授,博士,主要从事岩石力学和岩土工程防灾减灾方面的研究。E-mail:wwang@hhu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFC1501100);江苏省六大人才高峰项目(JZ-008);江苏高校“青蓝工程”项目(苏教师[2020]10号)

A Displacement Prediction Model for Dahua Landslide

WANG Wei1,2, ZOU Li-fang3, ZHOU Qian-yao1,2, JIANG Yu-hang1,2, CHEN Hong-jie4, XU Wei-ya1,2   

  1. 1. Geotechnical Research Institute,Hohai University,Nanjing 210024,China;
    2. Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering,Hohai University,Nanjing 210024, China;
    3. School of Earth Sciences and Engineering,Hohai University,Nanjing 211100,China;
    4. Huaneng Lancang River Hydropower Inc.,Kunming 650214,China
  • Received:2021-05-14 Revised:2021-07-15 Online:2022-09-01 Published:2022-09-21

摘要: 针对传统滑坡位移预测过程中的不足,提出了一种基于最小二乘支持向量机(LSSVM)的滑坡位移预测方法。以某流域大华滑坡为例,基于时序分析和集合经验模态分解法(EEMD)将原始序列重构为趋势项和波动项,趋势项位移受滑坡内部因素影响,采用最小二乘法与多项式方程进行拟合预测;波动项位移受库水位、降雨、地下水位等周期性因素影响,结合灰色关联度法和核主成分分析法(KPCA)对输入因子进行筛选与降维,并用粒子群算法-最小二乘支持向量机耦合模型(PSO-LSSVM)进行建模预测。最后将趋势项与周期项预测位移相加得到累计预测位移,并对模型预测精度进行定量分析。结果表明,建立的EEMD-KPCA-PSO-LSSVM组合模型预测效果良好,较传统BP神经网络、LSSVM等单一模型有着更高的预测精度,可为同类型滑坡位移预测提供新的思路。

关键词: 水动力型滑坡, 位移预测, 集合经验模态分解, 核主成分分析, 最小二乘支持向量机

Abstract: A method of landslide displacement prediction based on least squares support vector machine (LSSVM) is proposed to overcome the shortcomings of traditional prediction for Dahua landslide in Lancang River basin as a case study. The original sequence is decomposed and reconstructed into trend item and fluctuation item based on time series analysis and ensembled empirical mode decomposition (EEMD). The displacement of trend item is affected by internal factors of landslide,and the least square method and polynomial equation are used for fitting prediction. The displacement of fluctuation item is affected by periodic factors such as reservoir water level,rainfall and groundwater level. The grey correlation degree method and kernel principal component analysis (KPCA) are combined to screen and reduce the dimension of input factors,and then PSO-LSSVM coupling model is used for predicting the fluctuation item. Finally,the cumulative predicted displacement is obtained by adding the predicted displacement of trend item and fluctuation item,and the model prediction accuracy is quantitatively analyzed. Results demonstrate that the EEMD-KPCA-PSO-LSSVM combined model has a sound prediction performance with higher prediction accuracy than traditional BP neural network,LSSVM and other single models.

Key words: water-induced landslide, displacement prediction, EEMD, KPCA, LSSVM

中图分类号: 

Baidu
map