针对细砂岩在不同应力下的破坏模式和裂纹扩展规律等问题,采用单轴压缩、定角压剪和巴西劈裂的方式对细砂岩进行加载试验,采集各试样加载过程的声发射全波形,并基于小波阈值去噪方法对原始波形去噪处理后,再采用快速傅里叶变换获得信号的频谱特征。通过分析声发射全波形及主频、次主频的演化规律,将信号频率细分为低([10,70) kHz)、中([70,120) kHz)、高([120,180) kHz)3个等级,揭示了岩石的破裂失稳过程。研究结果表明:不同试验方法下的声发射全波形差异较大,波形幅值的变化与岩石损伤的渐进过程密切相关;同等试验方法下的声发射主频、次主频具有自相似性,演化规律较一致,次主频对裂隙发育状态更敏感;低频信号反映了细砂岩破坏时的一种固有属性,与加载方式和试验方法无关,仅中频率信号和高频率的信号对应剪切滑移过程与剪切破坏模式。
Abstract
To reveal the failure mode and crack propagation law of rock under different stresses, we carried out loading tests under different loading paths on fine sandstone using uniaxial compression, fixed-angle compression shear, and Brazilian splitting methods. We collected the acoustic emission(AE) full-waveform of the samples in the whole loading process and denoised the original waveform by using the wavelet threshold denoising method. Through fast Fourier transform, we obtained the frequency spectrum characteristics of the signals. By analyzing the temporal and spatial evolution of the full-waveform, dominant frequency (DF), and secondary dominant frequency (SDF), we subdivided the signal frequency into three levels, namely, low frequency (10-70 kHz), intermediate frequency (70-120 kHz), and high frequency (120-180 kHz), and revealed the process of rock failure and instability. The results indicated that the full-waveform of AE varied greatly under different loading methods. The change of amplitude was closely related to the gradual process of rock damage. Under equivalent loading method, the DF and SDF of AE are of self-similarity and their evolution law are relatively consistent. The SDF was more sensitive to the fracture development state. The low frequency signals reflected an inherent property of fine sandstone failure, irrelevant to the loading methods and test methods. Only the intermediate frequency and the high frequency of AE signals corresponded to the shear slip process and shear failure mode respectively.
关键词
细砂岩 /
裂纹扩展 /
声发射 /
小波阈值去噪方法 /
全波形 /
主频 /
次主频
Key words
fine sandstone /
crack propagation /
acoustic emission (AE) /
wavelet threshold denoising method /
full-waveform /
dominant frequency (DF) /
secondary dominant frequency (SDF)
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHANG Chuan-qing, FENG Xia-ting, ZHOU Hui, et al. Case Histories of Four Extremely Intense Rockbursts in Deep Tunnels[J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 275-288.
[2] 张建民, 李全生, 张 勇, 等. 煤炭深部开采界定及采动响应分析[J]. 煤炭学报, 2019, 44(5): 1314-1325.
[3] 王路军, 周宏伟, 荣腾龙, 等. 深部煤体采动应力场演化规律及扰动特征研究[J]. 岩石力学与工程学报, 2019, 38(增刊1): 2944-2954.
[4] XU Yuan, DAI Feng, DU Hong-bo. Experimental and Numerical Studies on Compression-Shear Behaviors of Brittle Rocks Subjected to Combined Static-Dynamic Loading[J]. International Journal of Mechanical Sciences, 2020, 175, doi: 10.1016/j.ijmecsci.2020.105520.
[5] JING L. A Review of Techniques, Advances and Outstanding Issues in Numerical Modelling for Rock Mechanics and Rock Engineering[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(3): 283-353.
[6] 王 猛, 宋子枫, 郑冬杰, 等. FLAC3D中岩石能量耗散模型的开发与应用[J]. 煤炭学报,2021(8): 2565-2573.
[7] 周 杰, 汪永雄, 周元辅. 基于颗粒流的砂岩三轴破裂演化宏-细观机理[J]. 煤炭学报, 2017, 42(增刊1): 76-82.
[8] 王振伟, 马 克, 田洪圆, 等. 基于RFPA2D-Flow软件对裂隙岩体渗透特性表征单元体的研究[J]. 煤炭学报, 2019, 44(10): 3012-3021.
[9] DO T N, WU Jian-hong. Simulation of the Inclined Jointed Rock Mass Behaviors in a Mountain Tunnel Excavation Using DDA[J]. Computers and Geotechnics, 2020, 117, doi: 10.1016/j.compgeo.2019.103249.
[10] GAO Fu-qiang, STEAD D, KANG Hong-pu. Simulation of Roof Shear Failure in Coal Mine Roadways Using an Innovative UDEC Trigon Approach[J]. Computers and Geotechnics, 2014(61):33-41
[11] 吴贤振, 刘建伟, 刘祥鑫, 等. 岩石声发射振铃累计计数与损伤本构模型的耦合关系探究[J]. 采矿与安全工程学报, 2015, 32(1): 28-34,41.
[12] 曹吉胜, 戴前伟, 马德鹏. 预制节理岩体卸荷损伤破坏机理及声发射特征试验研究[J]. 中南大学学报(自然科学版), 2018, 49(6): 1465-1471.
[13] 刘汉龙, 金林森, 姜德义, 等. 煤与砂岩复合岩声发射统计效应的试验与最大似然理论[J]. 煤炭学报, 2019, 44(5): 1544-1551.
[14] 张艳博 ,张 行, 梁 鹏, 等. 花岗岩破裂过程声发射横、纵波时频特征实验研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3554-3564.
[15] PETRULEK M, VILHELM J, RUDAJEV V, et al. Determination of the Anisotropy of Elastic Waves Monitored by a Sparse Sensor Network[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 208-216.
[16] 娄 全, 何学秋, 宋大钊, 等. 基于全波形的煤样单轴压缩破坏声电时频特征[J]. 工程科学学报, 2019, 41(7): 874-881.
[17] 朱振飞, 陈国庆, 肖宏跃, 等. 基于声发射多参量分析的岩桥裂纹扩展研究[J]. 岩石力学与工程学报, 2018, 37(4): 909-918.
[18] 张国凯, 李海波, 王明洋, 等. 脆性岩石应力-应变全过程声学特征演化规律[J]. 中南大学学报(自然科学版), 2019, 50(8): 1971-1980.
[19] 张宁博, 齐庆新, 欧阳振华, 等. 不同应力路径下大理岩声发射特性试验研究[J]. 煤炭学报, 2014, 39(2): 389-394.
[20] 王创业, 常新科, 刘沂琳, 等. 单轴压缩条件下大理岩破裂过程声发射频谱演化特征实验研究[J]. 岩土力学, 2020, 41(增刊1): 51-62.
[21] 班宇鑫, 傅 翔, 谢 强, 等. 页岩巴西劈裂裂缝形态评价及功率谱特征分析[J]. 岩土工程学报, 2019, 41(12): 2307-2315.
[22] 肖福坤, 刘 刚, 秦 涛, 等. 拉-压-剪应力下细砂岩和粗砂岩破裂过程声发射特性研究[J]. 岩石力学与工程学报, 2016, 35(增刊2): 3458-3472.
[23] GB/T 50266—2013, 工程岩体试验方法标准[S]. 北京: 中国计划出版社,2013.
[24] PERRAS M A, DIEDERICHS M S. A Review of the Tensile Strength of Rock: Concepts and Testing[J]. Geotechnical and Geological Engineering, 2014, 32(2): 525-546.
[25] 曾 鹏, 刘阳军, 纪洪广, 等. 单轴压缩下粗砂岩临界破坏的多频段声发射耦合判据和前兆识别特征[J]. 岩土工程学报, 2017, 39(3): 509-517.
[26] 贾雪娜. 应变岩爆试验的声发射本征频谱特征[D]. 北京:中国矿业大学(北京), 2013.
[27] 何满潮, 赵 菲, 张 昱, 等. 瞬时应变型岩爆模拟试验中花岗岩主频特征演化规律分析[J]. 岩土力学, 2015, 36(1): 1-8, 33.
基金
国家自然科学基金项目(51774020, 51934003);云南省高校科技创新团队支持计划项目;云南省创新团队项目